Skip to main content
Log in

Spectrum Analysis-Based Traffic Video Synopsis

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Camera-based monitoring systems have a wide range of applications in traffic management, since they can collect more informative data in contrast to other sensors. An increasing number of traffic camera systems collect a large volume of traffic video data daily, forming the Big Data of traffic video. One of the challenges for traffic video processing is their high cost of resources and time, which seriously block the development of intelligent transportation systems. This paper proposes a spectrum analysis method for traffic video synopsis, including motion detection and tracking. Our method can largely remove the background noises and correctly extract motion information. Spatial and temporal spectrum analysis (Fourier transformation) are jointly used to detect objects and their motions in traffic videos. Further, the detected motions are tracked by the particle filter, generating trajectories of motions. Motion detection and tracking results given by our method can provide a synopsis for Big Data of traffic videos. The outperformance of our method is demonstrated comparing to the state of art video analysis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Yang, J., Deng, W., Wang, J., Li, Q., & Wang, Z. (2006). Modeling pedestrians’ road crossing behavior in traffic system micro-simulation in China. Transportation Research Part A: Policy and Practice., 40(3), 280–290.

    Google Scholar 

  2. Gai, K., Qiu, L., Chen, M., Zhao, H., & Qiu, M. (2017). SA-EAST: security-aware efficient data transmission for ITS in mobile heterogeneous cloud computing. ACM Transactions on Embedded Computing Systems (TECS), 16(2), 1–22.

    Article  Google Scholar 

  3. Gai, K., Qiu, M., Sun, X., & Zhao, H. (2016). Security and privacy issues: a survey on FinTech. International Conference on Smart Computing and Communication, 10135, 236–247.

  4. Qiu, M., Ming, Z., Li, J., Gai, K., & Zong, Z. (2015). Phase-change memory optimization for green cloud with genetic algorithm. IEEE Transactions on Computers, 64(12), 3528–3540.

    Article  MathSciNet  MATH  Google Scholar 

  5. Pritch, Y., Rav-Acha, A., & Peleg, S. (2008). Nonchronological video synopsis and indexing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(11), 1971–1984.

    Article  Google Scholar 

  6. Lozano, O. M., & Otsuka, K. (2009). Real-time visual tracker by stream processing. Journal of Signal Processing Systems, 57(2), 285–295.

    Article  Google Scholar 

  7. Gai, K., Qiu, M., Ming, Z., Zhao, H., & Qiu, L. (2017). Spoofing-jamming attack strategy using optimal power distributions in wireless smart grid networks. IEEE Transactions on Smart Grid, 8(5), 2431–2439.

    Article  Google Scholar 

  8. Mmiaro, K., Koller-Meier, E., & Van Gool, L. (2003). An adaptive color-based particle filter. Image and Vision Computing, 21(1), 99–110.

    Article  Google Scholar 

  9. Li, Y., Qiu, M., Dai, W., & Vasilakos, A. (2016). Loop parallelism maximization for multimedia DSP in mobile vehicular clouds. IEEE Transactions on Cloud Computing, 1–12.

  10. Huang, C. R., Chung, P. C., Yang, D. K., Chen, H. C., & Huang, G. J. (2014). Maximum a posteriori probability estimation for online surveillance video synopsis. IEEE Transactions on Circuits and Systems for Video Technology, 24(8), 1417–1429.

    Article  Google Scholar 

  11. Zhong, R., Hu, R., Wang, Z., & Wang, S. (2014). Fast synopsis for moving objects using compressed video. IEEE Signal Processing Letters, 21(7), 834–838.

    Article  Google Scholar 

  12. Cotsaces, C., Nikolaidis, N., & Pitas, I. (2006). Video shot detection and condensed representation. A review. IEEE Signal Processing Magazine, 23(2), 28–37.

    Article  Google Scholar 

  13. Li, Y., Lee, S. H., Yeh, C. H., & Kuo, C. C. (2006). Techniques for movie content analysis and skimming: tutorial and overview on video abstraction techniques. IEEE Signal Processing Magazine, 23(2), 79–89.

    Article  Google Scholar 

  14. Bai, X., Wang, P., & Zhou, F. (2016). Pedestrian segmentation in infrared images based on circular shortest path. IEEE Transactions on Intelligent Transportation Systems, 17(8), 2214–2222.

    Article  Google Scholar 

  15. Wren, C. R., Azarbayejani, A., Darrell, T., & Pentland, A. P. (1997). Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 780–785.

    Article  Google Scholar 

  16. Stauffer, C., & Grimson, W. E. L. (1999). Adaptive background mixture models for real-time tracking. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2, 246–252.

  17. Friedman, N., Russell, S. (1997). Image segmentation in video sequences: a probabilistic approach. In Proceedings of the Thirteenth conference on Uncertainty in artificial intelligence, 175–181.

  18. Rittscher, J., Kato, J., Joga, S., & Blake, A. (2000). A probabilistic background model for tracking. Computer Vision—ECCV, 2000, 336–350.

    Google Scholar 

  19. Toyama, K., Krumm, J., Brumitt, B., & Meyers, B. (1999). Wallflower: principles and practice of background maintenance. The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1, 255–261.

  20. Ramesh, V. (2003). Background modeling and subtraction of dynamic scenes. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, 2, 1305–1312.

  21. Tuzel, O., Porikli, F., & Meer, P. (2005). A bayesian approach to background modeling. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1, 54–58.

  22. Kim, K., Chalidabhongse, T. H., Harwood, D., & Davis, L. (2005). Real-time foreground–background segmentation using codebook model. Real-Time Imaging, 11(3), 172–185.

    Article  Google Scholar 

  23. Fortun, D., Bouthemy, P., & Kervrann, C. (2015). Optical flow modeling and computation: a survey. Computer Vision and Image Understanding, 134, 1–21.

    Article  MATH  Google Scholar 

  24. Ouyang, W., & Wang, X. (2013). Joint deep learning for pedestrian detection. In Proceedings of the IEEE International Conference on Computer Vision, 1, 2056–2063.

  25. Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, F. Y. (2015). Traffic flow prediction with big data: a deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 16(2), 865–873.

    Google Scholar 

  26. Zhong, Y., Jain, A. K., & Dubuisson-Jolly, M. P. (2000). Object tracking using deformable templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(5), 544–549.

    Article  Google Scholar 

  27. Weng, S. K., Kuo, C. M., & Tu, S. K. (2006). Video object tracking using adaptive Kalman filter. Journal of Visual Communication and Image Representation, 17(6), 1190–1208.

    Article  Google Scholar 

  28. Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: a survey. ACM Computing Surveys (CSUR), 38(4), 13–26.

    Article  Google Scholar 

  29. Wang, Y., & Papageorgiou, M. (2005). Real-time freeway traffic state estimation based on extended Kalman filter: a general approach. Transportation Research Part B: Methodological, 39(2), 141–167.

    Article  Google Scholar 

  30. Li, P., Zhang, T., & Ma, B. (2004). Unscented Kalman filter for visual curve tracking. Image and Vision Computing, 22(2), 157–164.

    Article  Google Scholar 

  31. Nummiaro, K., Koller-Meier, E., & Van Gool, L. (2002). Object tracking with an adaptive color-based particle filter. Pattern Recognition, 353–360.

  32. Kim, W., & Kim, C. Active contours driven by the salient edge energy model. IEEE Transactions on Image Processing, 2013, 22(4), 1667–21673.

  33. Dockstader, S. L., & Tekalp, A. M. (2001). Multiple camera fusion for multi-object tracking. 2001 I.E. Workshop on Multi-Object Tracking, 2001, 95–102.

  34. Wang, N., & Yeung, D. Y. (2013). Learning a deep compact image representation for visual tracking. Advances in neural information processing systems, 2013, 809–817.

  35. Guo, C., Ma, Q., & Zhang, L. (2008). Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. IEEE conference on Computer vision and pattern recognition, 2008, 1–8.

  36. Vala, M. H., & Baxi, A. (2013). A review on Otsu image segmentation algorithm. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)., 2(2), 380–387.

    Google Scholar 

  37. Chen, Z., Wang, X., Sun, Z., & Wang, Z. (2016). Motion saliency detection using a temporal fourier transform. Optics & Laser Technology, 80, 1–15.

    Article  Google Scholar 

  38. CAVIAR. [Online]. Available:http://www-prima.inrialpes.fr/PETS04/caviar_data.html.

  39. ALOV++. [Online]. Available: http://www.alov300.org.

  40. Videezy. [Online]. Available: https://www.videezy.com/

  41. Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88(2), 303–338.

    Article  Google Scholar 

  42. Comaniciu, D., Ramesh, V., & Meer, P. (2000). Real-time tracking of non-rigid objects using mean shift. IEEE Conference on Computer Vision and Pattern Recognition, 2, 142–149.

    Google Scholar 

  43. Qiu, M., & Sha, E. H. (2009). Cost minimization while satisfying hard/soft timing constraints for heterogeneous embedded systems. ACM Transactions on Design Automation of Electronic Systems (TODAES), 14(2), 25–32.

    Article  Google Scholar 

  44. Gai, K., Qiu, M., Zhao, H., Tao, L., & Zong, Z. (2016). Dynamic energy-aware cloudlet-based mobile cloud computing model for green computing. Journal of Network and Computer Applications, 59, 46–54.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (No.61671201,61501173,61563036), the Natural Science Foundation of Jiangsu Province (No.BK20150824), the Fundamental Research Funds for the Central Universities (No.2017B01914), and the Jiangsu Overseas Scholar Program for University Prominent Young & Middle-aged Teachers and Presidents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Lv, G., Lv, L. et al. Spectrum Analysis-Based Traffic Video Synopsis. J Sign Process Syst 90, 1257–1267 (2018). https://doi.org/10.1007/s11265-018-1345-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-018-1345-z

Keywords

Navigation