Skip to main content
Log in

A Novel Kernel Correlation Coefficient with Robustness Against Nonlinear Attenuation and Impulsive Noise

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose a new kernel correlation coefficient (KECC), with an emphasis on its robustness against impulsive noise and/or monotonic nonlinear transformations. To gain further insight, we compared KECC with other four correlation coefficients, namely, Pearson’s product moment correlation coefficient (PPMCC), Kendall’s tau (KT), Spearman’s rho (SR) and order statistics correlation coefficient (OSCC). Extensive simulation experiments were conducted under linear, nonlinear, normal and contaminated Gaussian models (CGM) based on seven means of performance evaluation. Theoretical analysis showed that KECC satisfies various desired properties. Numerical results suggest that KECC performs equally well with the optimal PPMCC under the bivariate normal model, and outperforms the others when impulsive noise and/or nonlinearity exist in the data. Moreover, KECC can detect accurately the time delay of signals corrupted by impulsive noise. Last but not least, KECC runs in linearithmic time, only slightly slower than the fastest PPMCC. The advantages of KECC revealed in this work might shed new light on the topic of correlation analysis, which is important in many areas including signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Dougherty, E.R., Kim, S., & Chen, Y. (2000). Coefficient of determination in nonlinear signal processing. Signal Processing, 80(10), 2219–2235.

    Article  MATH  Google Scholar 

  2. Lian, J., Garner, G., Muessig, D., & Lang, V. (2010). A simple method to quantify the morphological similarity between signals. Signal Processing, 90(2), 684–688.

    Article  MATH  Google Scholar 

  3. Delmas, J.P., & Abeida, H. (2009). Asymptotic distribution of circularity coefficients estimate of complex random variables. Signal Processing, 89(12), 2670–2675. Special Section: Visual Information Analysis for Security.

    Article  MATH  Google Scholar 

  4. He, Y., Gan, T., Chen, W., & Wang, H. (2012). Multi-stage image denoising based on correlation coefficient matching and sparse dictionary pruning. Signal Processing, 92(1), 139–149.

    Article  Google Scholar 

  5. Xu, W., Chang, C., Hung, Y.S., Kwan, S.K., & Fung, P.C.W. (2006). Order statistic correlation coefficient and its application to association measurement of biosignals. In 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings, volume 2 (pp. II–II).

  6. Xu, W., Chang, C., Hung, Y.S., Kwan, S.K., & Chin Wan Fung, P. (2007). Order statistics correlation coefficient as a novel association measurement with applications to biosignal analysis. IEEE Transactions on Signal Processing, 55(12), 5552–5563.

    Article  MathSciNet  Google Scholar 

  7. Xu, W., Chang, C., Hung, Y.S., & Chin Wan Fung, P. (2008). Asymptotic properties of order statistics correlation coefficient in the normal cases. IEEE Transactions on Signal Processing, 56(6), 2239–2248.

    Article  MathSciNet  Google Scholar 

  8. Xu, W., Hung, Y.S., Niranjan, M., & Shen, M. (2010). Asymptotic mean and variance of gini correlation for bivariate normal samples. IEEE Transactions on Signal Processing, 58(2), 522–534.

    Article  MathSciNet  Google Scholar 

  9. Xu, W., Hou, Y., Hung, Y.S., & Zou, Y. (2013). A comparative analysis of spearman’s rho and kendall’s tau in normal and contaminated normal models. Signal Processing, 93(1), 261–276.

    Article  Google Scholar 

  10. Gibbons, J.D., & Chakraborti, S. (1992). Nonparametric Statistical Inference, 3rd edn. New York: Dekker, M.

    MATH  Google Scholar 

  11. Mari, D.D., & Kotz, S. (2001). Correlation and dependence, volume 518 World Scientific.

  12. Fisher, R.A. (1990). Statistical methods, Experimental Design, and Scientific Inference. New York: Oxford university press.

    MATH  Google Scholar 

  13. Fisher, R.A. (1921). On the ’probable error’ of a coefficient of correlation deduced from a small sample. Metron, 1, 3–32.

    Google Scholar 

  14. Fieller, E.C., Hartley, H.O., & Pearson, E.S. (1957). Test for rank correlation coefficients.i. Biometrika, 44, 470–481.

    Article  MathSciNet  MATH  Google Scholar 

  15. Kendall, M., & Gibbons, J.D. (1990). Rank Correlation Methods, 5th edn. New York: Oxford University Press.

    MATH  Google Scholar 

  16. Ma, R., Xu, W., Wang, Q., & Chen, W. (2014). Robustness analysis of three classical correlation coefficients under contaminated gaussian model. Signal Processing, 104, 51–58.

    Article  Google Scholar 

  17. Pearson, K. (1914). On an extension of the method of correlation by grades or ranks. Biometrika, 10(2/3), 416–418.

    Article  Google Scholar 

  18. Schechtman, E., & Yitzhaki, S. (1987). A measure of association base on Gini’s mean difference. Communications in Statistics-Theory Methods, 16(1), 207–231.

    Article  MathSciNet  MATH  Google Scholar 

  19. Ma, R., Xu, W., Zhang, Y., & Ye, Z. (2014). On an extension of the method of correlation by grades or ranks. PLos ONE, 9(11), e112215.

    Article  Google Scholar 

  20. Xu, W., Ma, R., Zhou, Y., Peng, S., & Hou, Y. (2016). Asymptotic properties of pearsons rank-variate correlation coefficient in bivariate normal model. Signal Processing, 119, 190–202.

    Article  Google Scholar 

  21. Stuart, A., & Ord, J.K. (1991). Kendall’s Advanced Theory of Statistics Volume 2 Classical Inference and Relationship, 5th edn. London: Edward Arnold.

    MATH  Google Scholar 

  22. Epanechnikov, V.A. (1969). Non-parametric estimation of a multivariate probability density. Theory of Probability & Its Applications, 14(1), 153–158.

    Article  MathSciNet  MATH  Google Scholar 

  23. Cleveland, W.S., & Devlin, S.J. (1988). Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association, 83(403), 596–610.

    Article  MATH  Google Scholar 

  24. Reznic, Z., Zamir, R., & Feder, M. (2002). Joint source-channel coding of a gaussian mixture source over the gaussian broadcast channel. IEEE Transaction on Information Theory, 48(3), 776–781.

    Article  Google Scholar 

  25. Chen, R., Wang, X., & Liu, J.S. (2000). Adaptive joint detection and decoding in flat-fading channels via mixture Kalman filtering. IEEE Transaction on Information Theory, 46(6), 2079–2094.

    Article  MathSciNet  MATH  Google Scholar 

  26. David, H.A., & Nagaraja, H.N. (2003). Order Statistics, 3rd edn: Wiley-Interscience, Hoboken.

  27. Balakrishnan, N., & Rao, C.R. (1998). OrderStatistics: Applications Vol. 17. New York: Elsevier.

  28. Balakrishnan, N., & Radhakrishna Rao, C. (1998). Order Statistics: Theory and Methods Vol. 16. New York: Elsevier.

  29. Stuart, A., & Ord, J.K. (1994). Kendall’s Advanced Theory of Statistics Volume 1 Distribution Theory, 6th edn. London: Edward Arnold.

    MATH  Google Scholar 

  30. Fieller, E.C., Hartley, H.O., & Pearson, E.S. (1957). Test for rank correlation coefficients.i. Biometrika, 44, 470–481.

    Article  MathSciNet  MATH  Google Scholar 

  31. Serfling, R.J. (2009). Approximation theorems of mathematical statistics Vol. 162. Wiley.

Download references

Acknowledgment

This work was jointly supported in part by National Natural Science Foundation of China (Projects 61271380 and U1501251), in part by Guangdong Natural Science Foundation (Project 2014A030313515), and in part by Guangzhou Science and Technology Plan (Project 201607010290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weichao Xu.

Appendix

Appendix

Proof Proof of Theorem 2

Let \(\nu _{\mathcal {X}}\) and \(\nu _{\mathcal {Y}}\) be the population medians of \(\mathcal {X}\) and \(\mathcal {Y}\), respectively. Then, from [31], we have

$$\begin{array}{@{}rcl@{}} \nu_{\mathcal{X}}&=&\mu_{\mathcal{X}}\\ \nu_{\mathcal{Y}}&=&\mu_{\mathcal{Y}}. \end{array} $$
(27)

Define

$$\begin{array}{@{}rcl@{}} \eta_{\mathcal{X}}&\triangleq& 3.53\textit{IR}_{\mathcal{X}} \end{array} $$
(28)
$$\begin{array}{@{}rcl@{}} \eta_{\mathcal{Y}}&\triangleq& 3.53\textit{IR}_{\mathcal{Y}} \end{array} $$
(29)
$$\begin{array}{@{}rcl@{}} \mathcal{X}^{\prime}&\triangleq& \mathcal{X}e^{-\frac{\mathcal{X}^{2}}{2\eta_{\mathcal{X}}^{2}}} \end{array} $$
(30)
$$\begin{array}{@{}rcl@{}} \mathcal{Y}^{\prime}&\triangleq& \mathcal{Y}e^{-\frac{\mathcal{Y}^{2}}{2\eta_{\mathcal{Y}}^{2}}} \end{array} $$
(31)
$$\begin{array}{@{}rcl@{}} \phi_{1}(\mathcal{X},\mathcal{Y})&\triangleq& \mathcal{N}(\mu_{\mathcal{X}},\mu_{\mathcal{Y}},\sigma^{2}_{\mathcal{X}},\sigma^{2}_{\mathcal{Y}},\rho) \end{array} $$
(32)
$$\begin{array}{@{}rcl@{}} \phi_{2}(\mathcal{X},\mathcal{Y})&\triangleq& \mathcal{N}(\mu_{\mathcal{X}},\mu_{\mathcal{Y}},\sigma^{\prime 2}_{\mathcal{X}},\sigma^{\prime 2}_{\mathcal{Y}},\rho^{\prime}) \end{array} $$
(33)
$$\begin{array}{@{}rcl@{}} \phi(\mathcal{X},\mathcal{Y})&\triangleq& (1-\varepsilon)\phi_{1}(\mathcal{X},\mathcal{Y})+\varepsilon \phi_{2}(\mathcal{X},\mathcal{Y}). \end{array} $$
(34)

When the sample size \(N\to \infty \), it follows that

$$ \lim_{N\to\infty} \mathbb{E}(r_{KE})=\frac{\mathbb{E}(\mathcal{X}^{\prime}\mathcal{Y}^{\prime})}{\sqrt{\mathbb{E}(\mathcal{X}^{\prime 2})E(\mathcal{Y}^{\prime 2})}}. $$
(35)

Therefore, we need to work out all the three expectation terms in Eq. 35.

For the bivariate normal distribution \(\phi _{1}(\mathcal {X},\mathcal {Y})\) in Eq. 32, the pdf

$$\begin{array}{@{}rcl@{}} \phi_{1}(\mathcal{X},\mathcal{Y})=\frac{1}{2\pi\sigma_{\mathcal{X}}\sigma_{\mathcal{Y}}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2}Q({\mathcal{X},\mathcal{Y}})} \end{array} $$
(36)

where

$$\begin{array}{@{}rcl@{}} Q({\mathcal{X},\mathcal{Y}})&=&\frac{1}{1-\rho^{2}} \left[ \left( \frac{\mathcal{X}-\mu_{\mathcal{X}}}{\sigma_{\mathcal{X}}} -\rho\frac{\mathcal{Y}-\mu_{\mathcal{Y}}}{\sigma_{\mathcal{Y}}} \right)^{2}\right. \\ &+&\left.(1-\rho^{2}) \left( \frac{\mathcal{Y}-\mu_{\mathcal{Y}}}{\sigma_{\mathcal{Y}}} \right)^{2} \right] \\ &=&\frac{(\mathcal{X}-a)^{2}}{(1-\rho^{2})\sigma_{\mathcal{X}}^{2}}+\frac{(\mathcal{Y}-\mu_{\mathcal{Y}})^{2}}{\sigma_{\mathcal{Y}}^{2}} \end{array} $$
(37)

with

$$\begin{array}{@{}rcl@{}} a=\mu_{\mathcal{X}}+\rho\frac{\sigma_{\mathcal{X}}}{\sigma_{\mathcal{Y}}}(\mathcal{Y}-\mu_{\mathcal{Y}})=\frac{\sigma_{\mathcal{X}}}{\sigma_{\mathcal{Y}}}\rho\mathcal{Y}. \end{array} $$
(38)

For the bivariate normal distribution \(\phi _{2}(\mathcal {X},\mathcal {Y})\) in Eq. 33, the pdf is

$$\begin{array}{@{}rcl@{}} \phi_{2}(\mathcal{X},\mathcal{Y})=\frac{1}{2\pi\sigma^{\prime}_{\mathcal{X}}\sigma^{\prime}_{\mathcal{Y}}\sqrt{1-\rho^{\prime 2}}}e^{-\frac{1}{2}Q^{\prime}({\mathcal{X},\mathcal{Y}})} \end{array} $$
(39)

where

$$\begin{array}{@{}rcl@{}} &&Q^{\prime}({\mathcal{X},\mathcal{Y}})=\frac{1}{1-{\rho^{\prime 2}}}\left[ \left( \frac{\mathcal{X}-\mu_{\mathcal{X}}}{\sigma^{\prime}_{\mathcal{X}}} -\rho^{\prime}\frac{\mathcal{Y}-\mu_{\mathcal{Y}}}{\sigma{\prime}_{\mathcal{Y}}}\right)^{2}\right. \\ &&+\left.(1-\rho^{\prime 2})\left( \frac{\mathcal{Y}-\mu_{\mathcal{Y}}}{\sigma^{\prime}_{\mathcal{Y}}}\right)^{2}\right] \\ &&=\frac{(\mathcal{X}-a^{\prime 2})}{(1-{\rho^{\prime 2}}){\sigma^{\prime}_{\mathcal{X}}}^{2}}+\frac{(\mathcal{Y}-\mu_{\mathcal{Y}})^{2}}{{\sigma^{\prime}_{\mathcal{Y}}}^{2}} \end{array} $$
(40)

with

$$\begin{array}{@{}rcl@{}} a^{\prime}=\mu_{\mathcal{X}}+\rho^{\prime}\frac{\sigma^{\prime}_{\mathcal{X}}}{\sigma^{\prime}_{\mathcal{Y}}}(\mathcal{Y}-\mu_{\mathcal{Y}})=\frac{\sigma^{\prime}_{\mathcal{X}}}{\sigma^{\prime}_{\mathcal{Y}}}\rho^{\prime}\mathcal{Y}. \end{array} $$
(41)

From Eqs. 3041, the numerator in Eq. 35 becomes

$$\begin{array}{@{}rcl@{}} \mathbb{E}(\mathcal{X}^{\prime}\mathcal{Y}^{\prime})&=&\iint\limits_{-\infty}^{+\infty}\mathcal{X}e^{-\frac{\mathcal{X}^{2}}{2\eta_{\mathcal{X}}^{2}}} \mathcal{Y}e^{-\frac{\mathcal{Y}^{2}}{2\eta_{\mathcal{Y}}^{2}}}\phi(\mathcal{X},\mathcal{Y})d\mathcal{X}d\mathcal{Y}\\ &=&(1-\varepsilon)\mathbb{E}_{1}(\mathcal{X}^{\prime}\mathcal{Y}^{\prime})+\varepsilon \mathbb{E}_{2}(\mathcal{X}^{\prime}\mathcal{Y}^{\prime}) \end{array} $$
(42)

where

$$\begin{array}{@{}rcl@{}} \mathbb{E}_{1}(\mathcal{X}^{\prime}\mathcal{Y}^{\prime})&=&\iint\limits_{-\infty}^{+\infty}\mathcal{X}^{\prime}\mathcal{Y}^{\prime}\phi_{1}(\mathcal{X},\mathcal{Y})d\mathcal{X}d\mathcal{Y} \end{array} $$
(43)
$$\begin{array}{@{}rcl@{}} &=&\frac{1}{2\pi\sigma_{\mathcal{X}}\sigma_{\mathcal{Y}}\sqrt{1-\rho^{2}}}\int\limits_{-\infty}^{+\infty}\mathcal{Y^{\prime}}e^{-\frac{\mathcal{Y}^{2}}{2\sigma_{\mathcal{Y}}^{2}}}H_{1}(\mathcal{Y})d\mathcal{Y} \\ \end{array} $$
(44)

with

$$ H_{1}(\mathcal{Y})=\int\limits_{-\infty}^{+\infty}\mathcal{X}e^{-\frac{\mathcal{X}^{2}}{2\eta_{\mathcal{X}}^{2}}}e^{-\frac{(\mathcal{X}-a)^{2}}{2(1-\rho^{2})\sigma_{\mathcal{X}}^{2}}}d\mathcal{X} $$
(45)

and

$$\begin{array}{@{}rcl@{}} \mathbb{E}_{2}(\mathcal{X}^{\prime}\mathcal{Y}^{\prime})&=&\iint\limits_{-\infty}^{+\infty}\mathcal{X}^{\prime}\mathcal{Y}^{\prime}\phi_{2}(\mathcal{X},\mathcal{Y})d\mathcal{X}d\mathcal{Y} \end{array} $$
(46)
$$\begin{array}{@{}rcl@{}} &=&\frac{1}{2\pi\sigma_{\mathcal{X}}^{\prime}\sigma_{\mathcal{Y}}^{\prime}\sqrt{1-\rho^{\prime 2}}}\int\limits_{-\infty}^{+\infty}\mathcal{Y^{\prime}}e^{-\frac{\mathcal{Y}^{2}}{2\sigma_{\mathcal{Y}}^{\prime 2}}}H_{2}(\mathcal{Y})d\mathcal{Y} \end{array} $$
(47)

with

$$ H_{2}(\mathcal{Y})=\int\limits_{-\infty}^{+\infty}\mathcal{X}e^{-\frac{\mathcal{X}^{2}}{2\eta_{\mathcal{X}}^{2}}}e^ {-\frac{(\mathcal{X}-a^{\prime})^{2}}{2(1-\rho^{\prime 2})\sigma_{\mathcal{X}}^{\prime 2}}}d\mathcal{X}. $$
(48)

Now we need to evaluate H 1 and H 2. It follows that

$$\begin{array}{@{}rcl@{}} \frac{\mathcal{X}^{2}}{2\eta_{\mathcal{X}}^{2}}+\frac{(\mathcal{X}-a)^{2}}{2(1-\rho^{2})\sigma_{\mathcal{X}}^{2}}=\frac{(\mathcal{X}-Z)^{2}+A}{2B} \end{array} $$
(49)

where

$$\begin{array}{@{}rcl@{}} A&=\frac{\eta_{\mathcal{X}}^{2}\sigma_{\mathcal{X}}^{2}a^{2}(1-\rho^{2})}{{\big[(1-\rho^{2})\sigma_{\mathcal{X}}^{2}+\eta_{\mathcal{X}}^{2}\big]}^{2}} \end{array} $$
(50)
$$\begin{array}{@{}rcl@{}} B&=\frac{\eta_{\mathcal{X}}^{2}\sigma_{\mathcal{X}}^{2}(1-\rho^{2})}{(1-\rho^{2})\sigma_{\mathcal{X}}^{2}+\eta_{\mathcal{X}}^{2}} \end{array} $$
(51)
$$\begin{array}{@{}rcl@{}} Z&=\frac{a\eta_{\mathcal{X}}^{2}}{(1-\rho^{2})\sigma_{\mathcal{X}}^{2}+\eta_{\mathcal{X}}^{2}}. \end{array} $$
(52)

Then, from Eqs. 3850 and 51, we have

$$\begin{array}{@{}rcl@{}} \frac{A}{B}=\frac{\sigma_{\mathcal{X}}^{2}\rho^{2}\mathcal{Y}^{2}}{\sigma_{\mathcal{Y}}^{2}\big[(1-\rho^{2})\sigma_{\mathcal{X}}^{2}+\eta_{\mathcal{X}}^{2}\big]} \end{array} $$
(53)

and hence

$$\begin{array}{@{}rcl@{}} H_{1}(\mathcal{Y})&=&\int\limits_{-\infty}^{+\infty}\mathcal{X}e^{-\frac{(\mathcal{X}-Z)^{2}}{2B}}e^{-\frac{A}{2B}}d\mathcal{X} \\ &=&e^{-\frac{A}{2B}}\int\limits_{-\infty}^{+\infty}\left[(\mathcal{X}-Z)e^{-\frac{(\mathcal{X}-Z)^{2}}{2B}}+Ze^{-\frac{(\mathcal{X}-Z)^{2}}{2B}}\right]d\mathcal{X} \\ &=&e^{-\frac{A}{2B}}\int\limits_{-\infty}^{+\infty}Ze^{-\frac{(\mathcal{X}-Z)^{2}}{2B}}d\mathcal{X} \\ &=&\sqrt{2\pi B}Ze^{-\frac{A}{2B}} \\ &=&C\mathcal{Y}e^{-\frac{\mathcal{Y}^{2}}{2D^{2}}} \end{array} $$
(54)

where

$$\begin{array}{@{}rcl@{}} C&=&\frac{\sigma_{\mathcal{X}}^{2}\eta_{\mathcal{X}}^{3}\rho\sqrt{2\pi(1-\rho^{2})}}{\sigma_{\mathcal{Y}}\sqrt{[(1-\rho^{2})\sigma_{\mathcal{X}}^{2}+\eta_{\mathcal{X}}^{2}]^{3}}} \end{array} $$
(55)
$$\begin{array}{@{}rcl@{}} D^{2}&=&\frac{\sigma_{\mathcal{Y}}^{2}[(1-\rho^{2})\sigma_{\mathcal{X}}^{2}+\eta_{\mathcal{X}}^{2}]}{\sigma_{\mathcal{X}}^{2}\rho^{2}}. \end{array} $$
(56)

Write

$$\begin{array}{@{}rcl@{}} \frac{1}{J^{2}}&=&\frac{1}{\eta_{\mathcal{Y}}^{2}}+\frac{1}{\sigma_{\mathcal{Y}}^{2}}+\frac{1}{D^{2}}\\ &=&\frac{W}{\sigma_{\mathcal{Y}}^{2}\eta_{\mathcal{Y}}^{2}[(1-\rho^{2})\sigma_{\mathcal{X}}^{2}+\eta_{\mathcal{X}}^{2}]} \end{array} $$
(57)

where

$$\begin{array}{@{}rcl@{}} W=\sigma_{\mathcal{X}}^{2}\sigma_{\mathcal{Y}}^{2}(1-\rho^{2})+\sigma_{\mathcal{Y}}^{2}\eta_{\mathcal{X}}^{2}+\sigma_{\mathcal{X}}^{2}\eta_{\mathcal{Y}}^{2}+\eta_{\mathcal{X}}^{2}\eta_{\mathcal{Y}}^{2}. \end{array} $$
(58)

Then

$$\begin{array}{@{}rcl@{}} \mathbb{E}_{1}(\mathcal{X}^{\prime}\mathcal{Y}^{\prime})&=&\frac{C}{2\pi\sigma_{\mathcal{X}}\sigma_{\mathcal{Y}}\sqrt{1-\rho^{2}}}\int\limits_{-\infty}^{+\infty}\mathcal{Y}^{2}e^{-\frac{\mathcal{Y}^{2}}{2J^{2}}}d\mathcal{Y}\\ &=&\frac{\sqrt{2\pi}CJ^{3}}{2\pi\sigma_{\mathcal{X}}\sigma_{\mathcal{Y}}\sqrt{1-\rho^{2}}}\\ &=&\frac{\eta_{\mathcal{X}}^{3}\eta_{\mathcal{Y}}^{3}\sigma_{\mathcal{X}}\sigma_{\mathcal{Y}}\rho}{\sqrt{W^{3}}} . \end{array} $$
(59)

In a parallel manner, we have

$$\begin{array}{@{}rcl@{}} H_{2}(\mathcal{Y})=C^{\prime}\mathcal{Y}e^{-\frac{\mathcal{Y}^{2}}{2D^{\prime 2}}} \end{array} $$
(60)

where

$$\begin{array}{@{}rcl@{}} C^{\prime}&=&\frac{\sigma_{\mathcal{X}}^{\prime 2}\eta_{\mathcal{X}}^{3}\rho^{\prime}\sqrt{2\pi(1-\rho^{\prime 2})}}{\sigma_{\mathcal{Y}}^{\prime}\sqrt{[(1-\rho^{\prime 2})\sigma_{\mathcal{X}}^{\prime 2}+\eta_{\mathcal{X}}^{2}]^{3}}} \end{array} $$
(61)
$$\begin{array}{@{}rcl@{}} D^{\prime 2}&=&\frac{\sigma_{\mathcal{Y}}^{\prime 2}[(1-\rho^{\prime 2})\sigma_{\mathcal{X}}^{\prime 2}+\eta_{\mathcal{X}}^{2}]}{\sigma_{\mathcal{X}}^{\prime 2}\rho^{\prime 2}}. \end{array} $$
(62)

Write

$$\begin{array}{@{}rcl@{}} \frac{1}{J^{\prime 2}}&=&\frac{1}{\eta_{\mathcal{Y}}^{2}}+\frac{1}{\sigma_{\mathcal{Y}}^{\prime 2}}+\frac{1}{D^{\prime 2}}\\ &=&\frac{W^{\prime}}{\sigma_{\mathcal{Y}}^{\prime 2}\eta_{\mathcal{Y}}^{2}[(1-\rho^{\prime 2})\sigma_{\mathcal{X}}^{\prime 2}+\eta_{\mathcal{X}}^{2}]} \end{array} $$
(63)

where

$$\begin{array}{@{}rcl@{}} W^{\prime}=\sigma_{\mathcal{X}}^{\prime 2}\sigma_{\mathcal{Y}}^{\prime 2}(1-\rho^{\prime 2})+\sigma_{\mathcal{Y}}^{\prime 2}\eta_{\mathcal{X}}^{2}+\sigma_{\mathcal{X}}^{\prime 2}\eta_{\mathcal{Y}}^{2}+\eta_{\mathcal{X}}^{2}\eta_{\mathcal{Y}}^{2}. \end{array} $$
(64)

A substitution of Eq. 60 into Eq. 47 gives

$$\begin{array}{@{}rcl@{}} \mathbb{E}_{2}(\mathcal{X}^{\prime}\mathcal{Y}^{\prime})&=&\frac{C^{\prime}}{2\pi\sigma_{\mathcal{X}}^{\prime}\sigma_{\mathcal{Y}}^{\prime}\sqrt{1-\rho^{\prime 2}}}{\int}_{-\infty}^{+\infty}\mathcal{Y}e^{-\frac{\mathcal{Y}^{2}}{2J^{\prime 2}}}d\mathcal{Y}\\ &=&\frac{\sqrt{2\pi}C^{\prime}J^{\prime 3}}{2\pi\sigma_{\mathcal{X}}^{\prime}\sigma_{\mathcal{Y}}^{\prime}\sqrt{1-\rho^{\prime 2}}}\\ &=&\frac{\rho^{\prime}\sigma_{\mathcal{X}}^{\prime}\sigma_{\mathcal{Y}}^{\prime}\eta_{\mathcal{X}}^{3}\eta_{\mathcal{Y}}^{3}} {\sqrt{W^{\prime 3}}}. \end{array} $$
(65)

Similarly we can also obtain

$$\begin{array}{@{}rcl@{}} \mathbb{E}(\mathcal{X}^{\prime 2})&=&\frac{(1-\varepsilon)\eta_{\mathcal{X}}^{6}\sigma^{2}_{\mathcal{X}}}{\sqrt{(2\sigma_{\mathcal{X}}^{2}\eta_{\mathcal{X}}^{2}+\eta_{\mathcal{X}}^{4})^{3}}}+ \frac{\varepsilon \eta_{\mathcal{X}}^{6}\sigma_{\mathcal{X}}^{\prime 2}}{\sqrt{(2\sigma_{\mathcal{X}}^{\prime 2}\eta_{\mathcal{X}}^{2}+\eta_{\mathcal{X}}^{4})^{3}}} \end{array} $$
(66)
$$\begin{array}{@{}rcl@{}} \mathbb{E}(\mathcal{Y}^{\prime 2})&=&\frac{(1-\varepsilon)\eta_{\mathcal{Y}}^{6}\sigma^{2}_{\mathcal{Y}}}{\sqrt{(2\sigma_{\mathcal{Y}}^{2}\eta_{\mathcal{Y}}^{2}+\eta_{\mathcal{Y}}^{4})^{3}}}+ \frac{\varepsilon \eta_{\mathcal{Y}}^{6}\sigma_{\mathcal{Y}}^{\prime 2}}{\sqrt{(2\sigma_{\mathcal{Y}}^{\prime 2}\eta_{\mathcal{Y}}^{2}+\eta_{\mathcal{Y}}^{4})^{3}}} . \end{array} $$
(67)

Given Eqs. 42596567 along with the fact that ρ∈[−1,+1], we arrive at

$$\begin{array}{@{}rcl@{}} \lim_{\begin{array}{c} N\to\infty\\ \sigma^{\prime}_{\mathcal{X}} \rightarrow \infty\\ \sigma^{\prime}_{\mathcal{Y}} \rightarrow \infty \end{array}} \mathbb{E}(r_{KE})&=&\frac{\mathbb{E}(\mathcal{X}^{\prime}\mathcal{Y}^{\prime})}{\sqrt{\mathbb{E}(\mathcal{X}^{\prime 2})E(\mathcal{Y}^{\prime 2})}}\\ &=&\frac{(1-\varepsilon)\mathbb{E}_{1}(\mathcal{X}^{\prime}\mathcal{Y}^{\prime})+\varepsilon \mathbb{E}_{2}(\mathcal{X}^{\prime}\mathcal{Y}^{\prime})}{\sqrt{\mathbb{E}(\mathcal{X}^{\prime 2})\mathbb{E}(\mathcal{Y}^{\prime 2})}}\\ &=&\frac{\rho}{\sqrt{(\frac{1-\rho^{2}}{S}+\frac{1}{2}T)^{3}}} \end{array} $$
(68)

where S and T are defined in Eqs. 9 and 10, respectively.

To show that the last term in Eq. 68 is approximately equal to ρ, we need to evaluate \(\eta _{\mathcal {X}}\) and \(\eta _{\mathcal {Y}}\) contained in S and T. Let Φ1(⋅) and Φ2(⋅) be the cdf of \(\mathcal {N}(\mu _{\mathcal {X}},\sigma ^{2}_{\mathcal {X}})\) and \(\mathcal {N}(\mu _{\mathcal {X}},\sigma ^{\prime 2}_{\mathcal {X}})\), respectively. Let q U and q L be the upper and lower quartiles of \(\mathcal {X}\), respectively. Since the marginal distribution of \(\mathcal {X}\) is

$$(1-\varepsilon)\mathcal{N}(\mu_{\mathcal{X}},\sigma^{2}_{\mathcal{X}})+\varepsilon\mathcal{N}(\mu_{\mathcal{X}},\sigma^{\prime 2}_{\mathcal{X}}), $$

we have

$$ (1-\varepsilon){\Phi}_{1}(q_{U})+\varepsilon{\Phi}_{2}(q_{U})=\frac{3}{4}. $$
(69)

By the assumption of \(\sigma ^{\prime }_{\mathcal {X}}\gg \sigma _{\mathcal {X}}\), it follows that 0<Φ2(q U )<Φ1(q U ), and hence, from Eq. 69,

$$ (1-\varepsilon){\Phi}_{1}(q_{U}) < \frac{3}{4} <{\Phi}_{1}(q_{U}). $$
(70)

Let \({\Phi }_{1}^{-1}(\cdot )\) be the inversion function of Φ1(⋅). Due to the monotonic property of \({\Phi }_{1}^{-1}\), we have, after imposing the transform \({\Phi }_{1}^{-1}\) to Eq. 70,

$$ {\Phi}_{1}^{-1}[(1-\varepsilon){\Phi}_{1}(q_{U})]<{\Phi}_{1}^{-1}\left( \frac{3}{4}\right)=0.6745\sigma_{\mathcal{X}} < q_{U}. $$
(71)

An application of Taylor’s theorem to the leftmost term in Eq. 71 gives

$${\Phi}_{1}^{-1}\left[(1-\varepsilon){\Phi}_{1}(q_{U})\right]=q_{U}-\frac{d{\Phi}_{1}^{-1}(t)}{dt}\bigg|_{t=\beta}\varepsilon {\Phi}_{1}(q_{U}) $$

where β lies in between (1−ε1(q U ) and Φ1(q U ). This means that

$${\Phi}_{1}^{-1}[(1-\varepsilon){\Phi}_{1}(q_{U})]=q_{U}-\mathcal{O}(\varepsilon) $$

which along with Eq. 71 leads to

$$q_{U}=0.6745\sigma_{\mathcal{X}}+\mathcal{O}(\varepsilon). $$

Similarly, we also have

$$q_{L}=-0.6745\sigma_{\mathcal{X}}-\mathcal{O}(\varepsilon). $$

Then

$$\text{IR}_{\mathcal{X}}\triangleq q_{U}-q_{L}=1.3490\sigma_{\mathcal{X}}+\mathcal{O}(\varepsilon) $$

and

$$ \eta_{\mathcal{X}}=3.53\text{IR}_{\mathcal{X}}= 4.7620\sigma_{\mathcal{X}}+\mathcal{O}(\varepsilon). $$
(72)

In a similar way, we can also obtain

$$ \eta_{\mathcal{Y}}=3.53\text{IR}_{\mathcal{Y}}= 4.7620\sigma_{\mathcal{Y}}+\mathcal{O}(\varepsilon). $$
(73)

Substituting Eqs. 72 and 73 into Eqs. 10 and 9, respectively, we have

$$T=2+\mathcal{O}(\varepsilon) $$

and

$$S=559.57+\mathcal{O}(\varepsilon). $$

Applying these results to the last term in (68) with the assumption of ε being small, we finally have

$$\begin{array}{@{}rcl@{}} \lim_{\begin{array}{c} N\to\infty\\ \sigma^{\prime}_{\mathcal{X}} \rightarrow \infty\\ \sigma^{\prime}_{\mathcal{Y}} \rightarrow \infty \end{array}} \mathbb{E}(r_{KE})\approx \rho \end{array} $$

thus completing the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Li, B., Ma, R. et al. A Novel Kernel Correlation Coefficient with Robustness Against Nonlinear Attenuation and Impulsive Noise. J Sign Process Syst 89, 395–413 (2017). https://doi.org/10.1007/s11265-016-1212-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-016-1212-8

Keywords

Navigation