Skip to main content
Log in

Towards Dictionaries of Optimal Size: A Bayesian Non Parametric Approach

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Solving inverse problems usually calls for adapted priors such as the definition of a well chosen representation of possible solutions. One family of approaches relies on learning redundant dictionaries for sparse representation. In image processing, dictionary learning is applied to sets of patches. Many methods work with a dictionary with a number of atoms that is fixed in advance. Moreover optimization methods often call for the prior knowledge of the noise level to tune regularization parameters. We propose a Bayesian non parametric approach that is able to learn a dictionary of adapted size. The use of an Indian Buffet Process prior permits to learn an adequate number of atoms. The noise level is also accurately estimated so that nearly no parameter tuning is needed. We illustrate the relevance of the resulting dictionaries on numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Notes

  1. \(\mathcal {N}(\boldsymbol {\mu },\boldsymbol {\Sigma })\) : Gaussian distribution with expectation μ and covariance Σ.

  2. \( \mathcal {G} (x;a,b)= x^{a-1}b^{a}\exp (-bx)/{\Gamma }(a) \text { for } x>0 \).

  3. Matlab code by R. Rubinstein is available at http://www.cs.technion.ac.il/ronrubin/software.html

  4. Matlab code by M. Zhou is available at http://mingyuanzhou.github.io/Code.html

References

  1. Tosic, I., & Frossard, P. (2011). Dictionary learning: What is the right representation for my signal. IEEE Signal Processing Magazine, 28, 27–38.

    Article  Google Scholar 

  2. Ahmed, N., Natarajan, T., & Rao, K.R. (1974). Discrete cosine transform. IEEE Transactions on Computers, C-23, 90–93.

    Article  MathSciNet  MATH  Google Scholar 

  3. Mallat, S. (2008). A wavelet tour of signal processing, third edition the sparse way: Academic Press.

  4. Olshausen, B.A., & Field, D.J. (1996). Emergence of simple-cell receptive properties by learning a sparse code for natural images. Nature, 381, 607–609.

    Article  Google Scholar 

  5. Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54, 4311–4322.

    Article  MATH  Google Scholar 

  6. Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15, 3736–3745.

    Article  MathSciNet  Google Scholar 

  7. Mairal, J., Elad, M., & Sapiro, G. (2008). Sparse representation for color image restoration. IEEE Transactions on Image Processing, 17, 53–69.

    Article  MathSciNet  MATH  Google Scholar 

  8. Mairal, J., Bach, F., Ponce, J., Sapiro, G., & Zisserman, A. (2009). Non-local sparse models for image restoration. IEEE International Conference on Computer Vision, 2272– 2279.

  9. Rao, N., & Porikli, F. (2012). A clustering approach to optimize online dictionary learning. IEEE International Conference on Acoustics, Speech and Signal Processing, 1293– 1296.

  10. Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2010). Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11, 19–60.

    MathSciNet  MATH  Google Scholar 

  11. Mazhar, R., & Gader, P.D. (2008). Ek-svd: Optimized dictionary design for sparse representations. International Conference on Pattern Recognition, 1–4.

  12. Feng, J., Song, L., Yang, X., & Zhang, W. (2009). Sub clustering k-svd: Size variable dictionary learning for sparse representations. IEEE International Conference on Image Processing, 2149– 2152.

  13. Rusu, C., & Dumitrescu, B. (2012). Stagewise k-svd to design efficient dictionaries for sparse representations. IEEE Signal Processing Letters, 19, 631–634.

    Article  Google Scholar 

  14. Marsousi, M., Abhari, K., Babyn, P., & Alirezaie, J. (2014). An adaptive approach to learn overcomplete dictionaries with efficient numbers of elements. IEEE Transactions on Signal Processing, 62, 3272–3283.

    Article  MathSciNet  Google Scholar 

  15. Zhou, M., Chen, H., Paisley, J., Ren, L., Li, L., Xing, Z., Dunson, D., Sapiro, G., & Carin, L. (2012). Nonparametric bayesian dictionary learning for analysis of noisy and incomplete images. IEEE Transactions on Image Processing, 21, 130–144.

    Article  MathSciNet  MATH  Google Scholar 

  16. Griffiths, T., & Ghahramani, Z. (2006). Infinite latent feature models and the indian buffet process, advances in NIPS 18. MIT Press, 475–482.

  17. Griffiths, T.L., & Ghahramani, Z. (2011). The indian buffet process: An introduction and review. Journal of Machine Learning Research, 12, 1185–1224.

    MathSciNet  MATH  Google Scholar 

  18. Knowles, D A, & Ghahramani, Z (2011). Nonparametric Bayesian sparse factor models with application togene expression modeling. The Annals of Applied Statistics, 5, 1534–1552.

    Article  MathSciNet  MATH  Google Scholar 

  19. Doshi-Velez, F., & Ghahramani, Z. (2009). Accelerated sampling for the indian buffet process. International Conference on Machine Learning, 273–280.

  20. Andrzejewski, D. Accelerated Gibbs sampling for infinite sparse factor analysis, LLNL Technical Report (LLNL-TR-499647).

  21. van Dyk, D. A., & Park, T. (2008). Partially collapsed gibbs samplers. Journal of the American Statistical Association, 103, 790–796.

    Article  MathSciNet  MATH  Google Scholar 

  22. Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16, 2080–2095.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Chainais.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, H.P., Chainais, P. Towards Dictionaries of Optimal Size: A Bayesian Non Parametric Approach. J Sign Process Syst 90, 221–232 (2018). https://doi.org/10.1007/s11265-016-1154-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-016-1154-1

Keywords

Navigation