Skip to main content

Advertisement

Log in

Foveated Nonlocal Self-Similarity

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

When we gaze a scene, our visual acuity is maximal at the fixation point (imaged by the fovea, the central part of the retina) and decreases rapidly towards the periphery of the visual field. This phenomenon is known as foveation. We investigate the role of foveation in nonlocal image filtering, installing a different form of self-similarity: the foveated self-similarity. We consider the image denoising problem as a simple means of assessing the effectiveness of descriptive models for natural images and we show that, in nonlocal image filtering, the foveated self-similarity is far more effective than the conventional windowed self-similarity. To facilitate the use of foveation in nonlocal imaging algorithms, we develop a general framework for designing foveation operators for patches by means of spatially variant blur. Within this framework, we construct several parametrized families of operators, including anisotropic ones. Strikingly, the foveation operators enabling the best denoising performance are the radial ones, in complete agreement with the orientation preference of the human visual system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. In our experiments we resort to symmetric padding.

  2. Because our foveation operators are always designed upon a given windowing kernel \(\mathbf {k}\), a more precise symbol would be \(\mathcal {F}_{\mathbf {k} } \). However, not to overload the notation, we omit the subscript \(\mathbf {k} \) and leave room to other decorations that are used in the later sections.

  3. These five requirements include the four requirements described in our preliminary conference publications (Foi and Boracchi 2012, 2013b, a), plus a non-negativity requirement, which had been always tacitly assumed but never mentioned explicitly.

  4. In particular, the recursive sequence \(\left\{ \varsigma _{n}\right\} _{n=0}^{+\infty }\) defined by

    $$\begin{aligned} \varsigma _{0}=\tfrac{1}{2\sqrt{\pi }}\sqrt{\tfrac{\mathbf {k}\left( 0\right) }{\mathbf {k}\left( u\right) }},\qquad \varsigma _{n+1}=\varsigma _{n}\left\| \bar{g}_{\varsigma _{n},u}^{\rho ,\vartheta }\right\| _{2} \sqrt{\tfrac{\mathbf {k}\left( 0\right) }{\mathbf {k}\left( u\right) }} \end{aligned}$$

    converges monotonically to the solution \(\overset{_{*}}{\varsigma } _{u}^{\rho ,\vartheta }\) of (49), with geometric rate for any \(\mathbf {k}\left( u\right) <\mathbf {k}\left( 0\right) \) (contraction mapping).

  5. Note that \(\bar{v}_{u_{i}}^{\rho ,\vartheta }\left( u_{j}\right) \) is nothing but the inner product between a Dirac patch at \(u_{i}\) and \(\mathcal { B}_{\rho ,\theta }\) applied to another Dirac patch at \(u_{j}\): \(\bar{v} _{u_{i}}^{\rho ,\vartheta }\left( u_{j}\right) =\left\langle \mathbf {\delta } _{u_{i}},\mathcal {B}_{\rho ,\theta }\left[ \mathbf {\delta }_{u_{j}}\right] \right\rangle \).

  6. http://www.cs.tut.fi/~foi/FoveatedNL

  7. The selected parameter range is general enough since on natural images the denoising performance of left-hand chiral operators (\(\rho \ge 1\), \(-\pi /2<\theta <0\)) is practically identical to those of right-hand chiral operators (\(\rho \ge 1\), \(0<\theta <\pi /2\)), as shown in Section Suppl.4.

  8. For Gaussian blur kernels, \(\mathcal {F}_{\rho ,0}=\mathcal {F}_{1/\rho ,\pi /2}\).

  9. Invertibility is feasible with self-map operators \(\mathcal {F}_{\rho ,\theta }^{\text {self}}\) provided that the inequality (50) is met with a strict lower bound. As a matter of fact, the greatest advantage of self-map operators is that they can be represented through \( \mathcal {B}_{\rho ,\theta }\) (46) as square matrices of size \( \left| U\right| \times \left| U\right| \).

  10. In fact, \(\mathcal {F}_{\rho ,\theta }[z,x_{1}](\bar{u})\) is proportional to the value in \(\bar{u}\) of the convolution between z and the blur kernel \( v_{\bar{u}}\), and this latter has a main axis oriented as \(\angle \bar{u} +\theta \)

References

  • Alahi, A., Ortiz, R., & Vandergheynst, P. (2012). FREAK: Fast retina keypoint. Proceedings of IEEE CVPR (pp. 510–517).

  • Alexander, S. K., Vrscay, E. R., & Tsurumi, S. (2008). A simple, general model for the affine self-similarity of images. Image Analysis and Recognition (Vol. 5112)., LNCS Berlin: Springer.

    Chapter  Google Scholar 

  • Arias, P., Facciolo, G., Caselles, V., & Sapiro, G. (2011). A variational framework for exemplar-based image inpainting. IJCV, 93(3), 319–347.

    Article  MathSciNet  MATH  Google Scholar 

  • Awate, S., & Whitaker, R. (2005). Higher-order image statistics for unsupervised, information-theoretic, adaptive, image filtering. Proceedings of IEEE CVPR, 2, 44–51.

    Google Scholar 

  • Baddeley, R. (1997). The correlational structure of natural images and the calibration of spatial representations. Cognitive Science, 21(3), 351–372.

    Article  Google Scholar 

  • Balas, B., Nakano, L., & Rosenholtz, R. (2009). A summary-statistic representation in peripheral vision explains visual crowding. Journal of Vision, 9(12), 13.

    Article  Google Scholar 

  • Barnsley, M. F. (1993). Fractals everywhere. Boston: Academic Press.

    MATH  Google Scholar 

  • Basu, A., & Wiebe, K. (1998). Enhancing videoconferencing using spatially varying sensing. IEEE TSMC-A, 28(2), 137–148.

    Google Scholar 

  • Bigun, J., & Granlund, G. H. (Sept. 1986). Central symmetry modelling. Proceedings of EUSIPCO (pp. 883–886).

  • Brockmole, J. R., & Irwin, D. E. (2005). Eye movements and the integration of visual memory and visual perception. Perception and Psychophysics, 67(3), 495–512.

    Article  Google Scholar 

  • Buades, A., Coll, B., & Morel, J.-M. (2005). A review of image denoising algorithms, with a new one. MMS, 4(2), 490.

    Article  MathSciNet  MATH  Google Scholar 

  • Buades, A., Coll, B., & Morel, J.-M. (2008). Nonlocal image and movie denoising. IJCV, 76(2), 123–139.

    Article  Google Scholar 

  • Buades, A., Coll, B., Morel, J.-M., & Sbert, C. (2009). Self-similarity driven color demosaicking. IEEE TIP, 18(6), 1192–1202.

    MathSciNet  Google Scholar 

  • Buades, A., Coll, B., & Morel, J.-M. (2010). Image denoising methods. A new nonlocal principle. SIAM Review, 52(1), 113–147.

    Article  MathSciNet  MATH  Google Scholar 

  • Buades, A., Coll, B., & Morel, J.-M. (2011). Non-local means denoising. IPOL2011.

  • Chang, E.-C., Mallat, S., & Yap, C. (2000). Wavelet foveation. ACHA, 9(3), 312–335.

    MathSciNet  MATH  Google Scholar 

  • Chatterjee, P., & Milanfar, P. (2008). A generalization of non-local means via kernel regression. Proceedings of SPIE CI VI, 6814, 68140P–68140P–9.

  • Chatterjee, P., & Milanfar, P. (2010). Is denoising dead? IEEE TIP, 19(4), 895–911.

    MathSciNet  Google Scholar 

  • Chierchia, G., Pustelnik, N., Pesquet, J.-C., & Pesquet-Popescu, B. (Mar. 2014). Epigraphical splitting for solving constrained convex formulations of inverse problems with proximal tools. arXiv:1210.5844v3.

  • Chierchia, G., Pustelnik, N., Pesquet, J.-C., & Pesquet-Popescu, B. (2014a). Epigraphical projection and proximal tools for solving constrained convex optimization problems. SIVP (pp. 1–13).

  • Chierchia, G., Pustelnik, N., Pesquet-Popescu, B., & Pesquet, J.-C. (2014). A nonlocal structure tensor-based approach for multicomponent image recovery problems. IEEE TIP, 23(12), 5531–5544.

    MathSciNet  Google Scholar 

  • Ciresan, D., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2012). Deep neural networks segment neuronal membranes in electron microscopy images. Proceedings of NIPS (pp. 2843–2851).

  • Conn, A. R., Scheinberg, K., & Vicente, L. (2009). Introduction to Derivative-Free Optimization. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Curcio, C., Sloan, K., Kalina, R., & Hendrickson, A. (1990). Human photoreceptor topography. Journal of Comparative Neurology, 292, 497–523.

    Article  Google Scholar 

  • Dabov, K., Foi, A., & Egiazarian, K. (2007). Video denoising by sparse 3D transform-domain collaborative filtering. Proceedings of EUSIPCO.

  • Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007b). Image denoising by sparse 3D transform-domain collaborative filtering. IEEE TIP, 16(8), 2080–2095.

    MathSciNet  Google Scholar 

  • Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2008). Image restoration by sparse 3D transform-domain collaborative filtering. Proceedings of SPIE EI, 6812, 681207–1–681207–12.

  • Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2009). BM3D image denoising with shape-adaptive principal component analysis. Proceedings of SPARS.

  • Daly, S., Ribas-Corbera, J., & Matthews, K. (2001). As plain as the noise on your face: Adaptive video compression using face detection and visual eccentricity models. JEI, 10(1), 30–46.

    Google Scholar 

  • Danielyan, A., Foi, A., Katkovnik, V., & Egiazarian, K., (2008). Image and video super-resolution via spatially adaptive block-matching filtering. Proceedings of LNLA.

  • Danielyan, A., Katkovnik, V., & Egiazarian, K. (2012). BM3D frames and variational image deblurring. IEEE TIP, 21(4), 1715–1728.

    MathSciNet  Google Scholar 

  • Darbon, J., Cunha, A., Chan, T., Osher, S., & Jensen, G. (May 2008). Fast nonlocal filtering applied to electron cryomicroscopy. IEEE ISBI (pp. 1331–1334).

  • De Bonet, J. S. (1997). Noise reduction through detection of signal redundancy. MIT AI Lab: Rethinking artificial intelligence.

    Google Scholar 

  • Deledalle, C.-A., Denis, L., & Tupin, F. (2012). How to compare noisy patches? Patch similarity beyond Gaussian noise. IJCV, 99(1), 86–102.

    Article  MathSciNet  MATH  Google Scholar 

  • Demeyer, M., De Graef, P., Wagemans, J., & Verfaillie, K. (2009). Transsaccadic identification of highly similar artificial shapes. Journal of Vision, 9(4), 28.

    Article  Google Scholar 

  • Desbordes, G. (2007). Vision in the Presence of Fixational Eye Movements: Insights from Psychophysics and Neural Modeling. PhD thesis, Boston University.

  • Dong, B., Ye, J., Osher, S., & Dinov, I. (2008). Level set based nonlocal surface restoration. MMS, 7(2), 589–598.

    Article  MathSciNet  MATH  Google Scholar 

  • Donner, K., & Hemilä, S. (2007). Modelling the effect of microsaccades on retinal responses to stationary contrast patterns. Vision Research, 47(9), 1166–1177.

    Article  Google Scholar 

  • Duncan, R. O., & Boynton, G. M. (2003). Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron, 38(4), 659–671.

    Article  Google Scholar 

  • Ebrahimi, M., & Vrscay, E. R. (2007). Solving the inverse problem of image zooming using “self-examples”. Image Analysis and Recognition (Vol. 4633, pp. 117–130)., LNCS b: a.

    Chapter  Google Scholar 

  • Ebrahimi, M., & Vrscay, E. R. (2008a). Examining the role of scale in the context of the non-local-means filter. Proceedings ICIAR (pp. 170–181)

  • Ebrahimi, M., & Vrscay, E. R. (2008b). Multi-frame super-resolution with no explicit motion estimation. Proceedings of IPCV.

  • Eckstein, M. P. (2011) Visual search: A retrospective. JOV, 11(5).

  • Efros, A., & Leung, T. (1999). Texture synthesis by non-parametric sampling. Proceedings of IEEE ICCV, 2, 1033–1038.

    Google Scholar 

  • Elad, M., & Datsenko, D. (2009). Example-based regularization deployed to super-resolution reconstruction of a single image. Computer Journal, 52(1), 15–30.

    Article  Google Scholar 

  • Engbert, R., & Kliegl, R. (2004). Microsaccades keep the eyes’ balance during fixation. Psychological Science, 15(6), 431–431.

    Article  Google Scholar 

  • Etienne-Cummings, R., Van der Spiegel, J., Mueller, P., & Zhang, M.-Z. (2000). A foveated silicon retina for two-dimensional tracking. IEEE TCS, 47(6), 504–517.

    Google Scholar 

  • Foi, A., & Boracchi, G. (2012). Foveated self-similarity in nonlocal image filtering. Proceedings of SPIE HVE, I, 8291.

    Google Scholar 

  • Foi, A., & Boracchi, G. (Sept. 2013a). Anisotropically foveated nonlocal image denoising. Proceedings of IEEE ICIP (pp. 464–468).

  • Foi, A., & Boracchi, G. (2013b). Anisotropic foveated self-similarity. Proceedings of SPARS (p. 1), July 8–11.

  • Foi, A., & Boracchi, G. (2014). Nonlocal foveated principal components. Proceedings of IEEE Workshop SSP (pp. 145–148).

  • Freeman, J., & Simoncelli, E. P. (2011). Metamers of the ventral stream. Nature Neuroscience, 14(9), 1195–1201.

    Article  Google Scholar 

  • Freeman, J., Brouwer, G. J. J., Heeger, D. J., & Merriam, E. P. (2011). Orientation decoding depends on maps, not columns. Journal of Neuroscience, 31(13), 4792–4804.

    Article  Google Scholar 

  • Freeman, W., Jones, T., & Pasztor, E. (2002). Example-based superresolution. IEEE CG & A, 22(2), 56–65.

    Google Scholar 

  • Froment, J. (2014). Parameter-free fast pixelwise non-local means denoising. IPOL, 4, 300–326.

    Article  Google Scholar 

  • Garway-Heath, D. F., Caprioli, J., Fitzke, F. W., & Hitchings, R. A. (2000). Scaling the hill of vision: The physiological relationship between light sensitivity and ganglion cell numbers. IOVS, 41(7), 1774–1782.

    Google Scholar 

  • Geisler, W., Perry, J., Super, B., & Gallogly, D. (2001). Edge co-occurrence in natural images predicts contour grouping performance. Vision Research, 41(6), 711–724.

    Article  Google Scholar 

  • Geisler, W. S., & Perry, J. S. (1998). A real-time foveated multiresolution system for low-bandwidth video communication. Proceedings of SPIE HVEI (pp. 294–305).

  • Ghazel, M., Freeman, G. H., & Vrscay, E. R. (2003). Fractal image denoising. IEEE TIP, 12(12), 1560–1578.

    Google Scholar 

  • Gilboa, G., & Osher, S. (2009). Nonlocal operators with applications to image processing. MMS, 7(3), 1005–1028.

    Article  MathSciNet  MATH  Google Scholar 

  • Grewenig, S., Zimmer, S., & Weickert, J. (2011). Rotationally invariant similarity measures for nonlocal image denoising. Journal of Visual Communication and Image R, 22(2), 117–130.

    Article  Google Scholar 

  • Haloi, M. (2015). Improved microaneurysm detection using deep neural networks. ArXiv:1505.04424.

  • Herwig, A., & Schneider, W. X. (2014). Predicting object features across saccades: Evidence from object recognition and visual search. Journal of Experimental Psychology: General, 143(5), 1903–1922.

    Article  Google Scholar 

  • Jacquin, A. (1992). Image coding based on a fractal theory of iterated contractive image transformations. IEEE TIP, 1(1), 18–30.

    Google Scholar 

  • Jennings, J. A. M., & Charman, W. (1997). Analytic approximation of the off-axis modulation transfer function of the eye. Vision Research, 37(6), 697–704.

    Article  Google Scholar 

  • Ji, Z., Chen, Q., Sun, Q.-S., & Xia, D.-S. (2009). A moment-based nonlocal-means algorithm for image denoising. IPL, 109, 1238–1244.

    Article  MathSciNet  MATH  Google Scholar 

  • Jin, Q., Grama, I., & Liu, Q. (2011). Removing Gaussian noise by optimization of weights in non-local means. ArXiv:1109.5640.

  • Joselevitch, C. (2008). Human retinal circuitry and physiology. Psychology and Neuroscience, 1(2), 141–165.

    Article  Google Scholar 

  • Karlsson, S., & Bigun, J. (Mar. 2011). Synthesis and detection of log-spiral codes. SSBA Proceedings (p. 4).

  • Katkovnik, V., Foi, A., Egiazarian, K., & Astola, J. (2010). From local kernel to nonlocal multiple-model image denoising. IJCV, 86(1), 1–32.

    Article  MathSciNet  Google Scholar 

  • Kervrann, C., & Boulanger, J. (2006). Optimal spatial adaptation for patch-based image denoising. IEEE TIP, 15(10), 2866–2878.

    Google Scholar 

  • Kervrann, C., Boulanger, J., & Coupé, P. (2007). Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal. Proceedings of SSVM, SSVM’07 (pp. 520–532).

  • Kindermann, S., Osher, S., & Jones, P. (2005). Deblurring and denoising of images by nonlocal functionals. MMS, 4(4), 1091–1115.

    Article  MathSciNet  MATH  Google Scholar 

  • Kortum, P., & Geisler, W. (1996). Implementation of a foveated image coding system for image bandwidth reduction. Proceedings of SPIE HVEI (pp. 350–360).

  • Kowler, E. (2011). Eye movements: The past 25 years. Vision Research, 51(13), 1457–1483.

    Article  Google Scholar 

  • Krishna, B. S., Ipata, A. E., Bisley, J. W., Gottlieb, J., & Goldberg, M. E. (2014). Extrafoveal preview benefit during free-viewing visual search in the monkey. JOV, 14(1), 6.

    Article  Google Scholar 

  • La Torre, D., Vrscay, E. R., Ebrahimi, M., & Barnsley, M. F. (2009). Measure-valued images, associated fractal transforms, and the affine self-similarity of images. SSIMS, 2(2), 470–507.

    Article  MathSciNet  MATH  Google Scholar 

  • Lebrun, M., Buades, A., & Morel, J.-M. (2013). A nonlocal bayesian image denoising algorithm. SSIMS, 6(3), 1665–1688.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S., Pattichis, M., & Bovik, A. (2001). Foveated video compression with optimal rate control. IEEE TIP, 10(7), 977–992.

    MathSciNet  MATH  Google Scholar 

  • Levick, W., & Thibos, L. (1982). Analysis of orientation bias in cat retina. The Journal of Physiology, 329, 243.

    Article  Google Scholar 

  • Levin, A., Nadler, B., Durand, F., & Freeman, W. T. (2012). Patch complexity, finite pixel correlations and optimal denoising. Proceedings of ECCV, 5, 73–86.

    Google Scholar 

  • Li, Y., & Huttenlocher, D. (2008). Sparse long-range random field and its application to image denoising. Proceedings of ECCV (Vol. 5304, pp. 344–357), LNCS

  • Lou, Y., Favaro, P., Soatto, S., & Bertozzi, A. (2009). Nonlocal similarity image filtering. Proceedings of ICIAP (pp. 62–71).

  • Louchet, C., & Moisan, L. (2011). Total variation as a local filter. SSIMS, 4(2), 651–694.

    Article  MathSciNet  MATH  Google Scholar 

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. IJCV, 60, 91–110.

    Article  Google Scholar 

  • Lyu, S., & Simoncelli, E. (2009). Modeling multiscale subbands of photographic images with fields of gaussian scale mixtures. IEEE TPAMI, 31(4), 693–706.

    Article  Google Scholar 

  • Maggioni, M., Boracchi, G., Foi, A., & Egiazarian, K. (2012). Video denoising, deblocking and enhancement through separable 4-D nonlocal spatiotemporal transforms. IEEE TIP, 21(9), 3952–3966.

    MathSciNet  Google Scholar 

  • Mahmoudi, M., & Sapiro, G. (2005). Fast image and video denoising via nonlocal means of similar neighborhoods. IEEE SPL, 12(12), 839–842.

    Google Scholar 

  • Maleki, A., Narayan, M., & Baraniuk, R. G. (2013). Anisotropic nonlocal means. ACHA, 35(3), 452–482.

    MathSciNet  MATH  Google Scholar 

  • Manjon-Herrera, J. V., & Buades, A. (2008). Non-local means filter, Matlab code. Matlab Central File Exchange http://www.mathworks.com/matlabcentral/fileexchange/13176-non-local-means-filter.

  • Martinez-Conde, S., Otero-Millan, J., & Macknik, S. L. (2013). The impact of microsaccades on vision: towards a unified theory of saccadic function. Nature Reviews Neuroscience, 14(2), 83–96.

    Article  Google Scholar 

  • McCamy, M. B., Otero-Millan, J., Macknik, S. L., Yang, Y., Troncoso, X. G., Baer, S. M., et al. (2012). Microsaccadic efficacy and contribution to foveal and peripheral vision. The Journal of Neuroscience, 32(27), 9194–9204.

    Article  Google Scholar 

  • Milanfar, P. (2013). A tour of modern image filtering: New insights and methods, both practical and theoretical. IEEE SPM, 30(1), 106–128.

    Article  MathSciNet  Google Scholar 

  • Monaco, J. P., Bovik, A. C., & Cormack, L. K. (2009). Active, foveated, uncalibrated stereovision. IJCV, 85(2), 192–207.

    Article  Google Scholar 

  • Mosseri, I., Zontak, M., & Irani, M. (2013). Combining the power of internal and external denoising. Proceedings of IEEE ICCP (pp. 1–9).

  • Olmedo-Payá, A., Martínez-Álvarez, A., Cuenca-Asensi, S., Ferrández-Vicente, J., & Fernández, E. (2013). Modeling the effect of fixational eye movements in natural scenes. Natural and Artificial Models in Computation and Biology (vol. 7930, pp. 332–341), LNCS.

  • Orchard, J., Ebrahimi, M., & Wong, A. (Oct. 2008). Efficient nonlocal-means denoising using the SVD. Proceedings of ICIP (pp. 1732–1735).

  • Osindero, S., Welling, M., & Hinton, G. E. (2006). Topographic product models applied to natural scene statistics. Neural Computation, 18(2), 381–414.

    Article  MathSciNet  MATH  Google Scholar 

  • Peyré, G. (2009a). Sparse modeling of textures. Journal of Mathematical Imaging and Vision, 34(1), 17–31.

    Article  MathSciNet  Google Scholar 

  • Peyré, G. (2009b). Manifold models for signals and images. CVIU, 113(2), 249–260.

    Google Scholar 

  • Poletti, M., Listorti, C., & Rucci, M. (2013). Microscopic eye movements compensate for nonhomogeneous vision within the fovea. Current Biology, 23(17), 1691–1695.

    Article  Google Scholar 

  • Postec, S. (2012). Quelques remarques en débruitage des images liées à des propriétés de similarité, de régularité et de parcimonie. PhD thesis, Université de Bretagne-Sud.

  • Protter, M., Elad, M., Takeda, H., & Milanfar, P. (2009). Generalizing the nonlocal-means to super-resolution reconstruction. IEEE TIP, 18(1), 36–51.

    MathSciNet  Google Scholar 

  • Ranzato, M., Mnih, V., Susskind, J., & Hinton, G. (2013). Modeling natural images using gated MRFs. IEEE TPAMI, 35(9), 2206–2222.

    Article  Google Scholar 

  • Rosenholtz, R., Huang, J., Raj, A., Balas, B. J., & Ilie, L. (2012). A summary statistic representation in peripheral vision explains visual search. JOV 12(4).

  • Rosman, G., Dubrovina, A., & Kimmel, R. (2013). Patch-collaborative spectral point-cloud denoising. Computer Graphics Forum.

  • Roth, S., & Black, M. (2005). Fields of experts: a framework for learning image priors. Proceedings of IEEE CVPR, 2, 860–867.

    Google Scholar 

  • Rucci, M., Iovin, R., Poletti, M., & Santini, F. (2007). Miniature eye movements enhance fine spatial detail. Nature, 447(7146), 852–855.

    Article  Google Scholar 

  • Salmon, J. (2010). On two parameters for denoising with non-local means. IEEE SPL, 17(3), 269–272.

    MathSciNet  Google Scholar 

  • Sasaki, Y., Rajimehr, R., Kim, B., Ekstrom, L., Vanduffel, W., & Tootell, R. (2006a). The radial bias: A different slant on visual orientation sensitivity in human and nonhuman primates. Neuron, 51(5), 661–670.

    Article  Google Scholar 

  • Sasaki, Y., Rajimehr, R., Kim, B. W., Knutsen, T., Ekstrom, L., Dale, A., et al. (2006b). The radial orientation effect in human and non-human primates. JOV, 6(6), 916–916.

    Article  Google Scholar 

  • Sigman, M., Cecchi, G. A., Gilbert, C. D., & Magnasco, M. O. (2001). On a common circle: Natural scenes and gestalt rules. PNAS, 98(4), 1935–1940.

    Article  Google Scholar 

  • Strasburger, H., Rentschler, I., & Jüttner, M. (2011). Peripheral vision and pattern recognition: A review. JOV 11(5).

  • Sutour, C., Deledalle, C.-A., & Aujol, J.-F. (2014). Adaptive regularization of the NL-means: Application to image and video denoising. IEEE TIP, 23(8), 3506–3521.

    MathSciNet  Google Scholar 

  • Tasdizen, T. (2009). Principal neighborhood dictionaries for nonlocal means image denoising. IEEE TIP, 18(12), 2649–2660.

    MathSciNet  Google Scholar 

  • Thaipanich, T., Oh, B., Wu, P.-H., Xu, D., & Kuo, C.-C. (2010). Improved image denoising with adaptive nonlocal means (ANL-means) algorithm. IEEE TCE, 56(4), 2623–2630.

  • Toet, A., & Levi, D. M. (1992). The two-dimensional shape of spatial interaction zones in the parafovea. Vision Research, 32(7), 1349–1357.

    Article  Google Scholar 

  • Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and color images. Proceedings of ICCV (pp. 839–846).

  • Tong, F., & Li, Z.-N. (1995). Reciprocal-wedge transform for space-variant sensing. IEEE TPAMI, 17(5), 500–511.

    Article  Google Scholar 

  • Torralba, A., & Oliva, A. (2003). Statistics of natural image categories. Network: Computation in Neural Systems, 14, 391–412.

    Article  Google Scholar 

  • USC-SIPI. (2016). University of Southern California Signal and Image Processing Institute image database. http://sipi.usc.edu/database/.

  • van der Schaaf, A., & van Hateren, J. (1996). Modelling the power spectra of natural images: Statistics and information. Vision Research, 36(17), 2759–2770.

    Article  Google Scholar 

  • Wallace, R. S., Ong, P.-W., Bederson, B. B., & Schwartz, E. L. (1994). Space variant image processing. IJCV, 13(1), 71–90.

    Article  Google Scholar 

  • Wandell, B. A. (1995). Foundations of Vision. Sunderland: Sinauer Assoc.

    Google Scholar 

  • Wang, J., Guo, Y., Ying, Y., Liu, Y., & Peng, Q. (Oct. 2006). Fast non-local algorithm for image denoising. Proceedings IEEE ICIP (pp. 1429–1432).

  • Wang, Z., & Bovik, A. (2001). Embedded foveation image coding. IEEE TIP, 10(10), 1397–1410.

    MATH  Google Scholar 

  • Wang, Z., & Bovik, A. (2006). Foveated image and video coding. Digital Video, Image Quality and Perceptual Coding (pp. 431–457).

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error measurement to structural similarity. IEEE TIP, 13(4), 600–612.

    Google Scholar 

  • Wei, J., & Li, Z.-N. (1998). Efficient disparity-based gaze control with foveate wavelet transform. Proceedings IEEE/RSJ IROS, 2, 866–871.

    Google Scholar 

  • Wei, L.-Y., & Levoy, M. (2000). Fast texture synthesis using tree-structured vector quantization. Proceedings SIGGRAPH (pp. 479–488).

  • Weiman, C. F., & Chaikin, G. (1979). Logarithmic spiral grids for image processing and display. CGIP, 11(3), 197–226.

    Google Scholar 

  • Weiss, Y., & Freeman, W. (2007). What makes a good model of natural images? Proceedings of IEEE CVPR (pp. 1–8).

  • Wertheim, T. (1894). Über die indirekte sehschärfe. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 7, 172–187.

    Google Scholar 

  • Williams, D. R., Artal, P., Navarro, R., McMahon, M. J., & Brainard, D. H. (1996). Off-axis optical quality and retinal sampling in the human eye. Vision Research, 36(8), 1103–1114.

    Article  Google Scholar 

  • Wodnicki, R., Roberts, G., & Levine, M. (1995) A foveated image sensor in standard CMOS technology. Proceedings of CCIC (pp. 357–360).

  • Yaroslavsky, L. (1985). Digital Picture Processing. An Introduction. Berlin: Springer.

    Book  Google Scholar 

  • Zhang, D., & Wang, Z. (2002). Image information restoration based on long-range correlation. IEEE TCSVT, 12(5), 331–341.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Academy of Finland (Project No. 252547, Academy Research Fellow 2011-2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Foi.

Additional information

Communicated by Stefan Roth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7103 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foi, A., Boracchi, G. Foveated Nonlocal Self-Similarity. Int J Comput Vis 120, 78–110 (2016). https://doi.org/10.1007/s11263-016-0898-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-016-0898-1

Keywords

Navigation