Skip to main content
Log in

A Logarithmic Image Prior for Blind Deconvolution

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Blind Deconvolution consists in the estimation of a sharp image and a blur kernel from an observed blurry image. Because the blur model admits several solutions it is necessary to devise an image prior that favors the true blur kernel and sharp image. Many successful image priors enforce the sparsity of the sharp image gradients. Ideally the \(L_0\) “norm” is the best choice for promoting sparsity, but because it is computationally intractable, some methods have used a logarithmic approximation. In this work we also study a logarithmic image prior. We show empirically how well the prior suits the blind deconvolution problem. Our analysis confirms experimentally the hypothesis that a prior should not necessarily model natural image statistics to correctly estimate the blur kernel. Furthermore, we show that a simple Maximum a Posteriori formulation is enough to achieve state of the art results. To minimize such formulation we devise two iterative minimization algorithms that cope with the non-convexity of the logarithmic prior: one obtained via the primal-dual approach and one via majorization-minimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Although we choose an \(L_2\) norm, any \(L_q\) norm could be used. However, we have found experimentally that for a wide set of values in q this makes little difference in the final performance.

  2. Notice that the 1D problem leads to a third order polynomial equation for which closed-form solutions are known.

  3. A list of all the experiments is available at www.cvg.unibe.ch/dperrone/logtv/.

References

  • Babacan, S. D., Molina, R., Do, M. N., & Katsaggelos, A. K. (2012). Bayesian blind deconvolution with general sparse image priors. In ECCV. Firenze: Springer.

  • Burger, M., & Lucka, F. (2014). Maximum-a-posteriori estimates in linear inverse problems with log-concave priors are proper bayes estimators. Inverse Problems, 30, 114004.

    Article  MathSciNet  MATH  Google Scholar 

  • Candes, E. J., Wakin, M. B., & Boyd, S. (2008). Enhancing sparsity by reweighted l1 minimization. Journal of Fourier Analysis and Applications, 14(5), 877–905.

    Article  MathSciNet  MATH  Google Scholar 

  • Chambolle, A., & Pock, T. (2011). A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1), 120–145.

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, T., & Wong, C. K. (1998). Total variation blind deconvolution. IEEE Transactions on Image Processing, 7(3), 370–375.

    Article  Google Scholar 

  • Chaudhuri, S., Velmurugan, R., & Rameshan, R. M. (2014). Blind image deconvolution. Cham: Springer.

    Book  MATH  Google Scholar 

  • Cho, S., & Lee, S. (2009). Fast motion deblurring. ACM Transactions on Graphics, 28(5), 1–8.

    Article  Google Scholar 

  • Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., & Freeman, W. T. (2006). Removing camera shake from a single photograph. ACM Transactions on Graphics, 25(3), 787–794.

    Article  Google Scholar 

  • Hunter, D., & Lange, K. (2004). A tutorial on mm algorithms. The American Statistician, 58, 30–37.

    Article  MathSciNet  Google Scholar 

  • Kenig, T., Kam, Z., & Feuer, A. (2010). Blind image deconvolution using machine learning for three-dimensional microscopy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(12), 2191–2204. doi:10.1109/TPAMI.2010.45.

    Article  Google Scholar 

  • Keuper, M., Schmidt, T., Temerinac-Ott, M., Padeken, J., Heun, P., Ronneberger, O., & Brox, T. (2013). Blind deconvolution of widefield fluorescence microscopic data by regularization of the optical transfer function (otf). In 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 2179–2186).

  • Krishnan, D., Tay, T., & Fergus, R. (2011). Blind deconvolution using a normalized sparsity measure. In 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 233–240).

  • Krishnan, D., Bruna, J., & Fergus, R. (2013). Blind deconvolution with re-weighted sparsity promotion. CoRR arXiv:1311.4029.

  • Levin, A., Fergus, R., Durand, F., & Freeman, W. (2007). Image and depth from a conventional camera with a coded aperture. ACM Transactions on Graphics, 26, 70.

    Article  Google Scholar 

  • Levin, A., Weiss, Y., Durand, F., & Freeman, W. T. (2009). Understanding and evaluating blind deconvolution algorithms. In CVPR (pp. 1964–1971). IEEE.

  • Levin, A., Weiss, Y., Durand, F., & Freeman, W. (2011a). Efficient marginal likelihood optimization in blind deconvolution. In 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 2657–2664). doi:10.1109/CVPR.2011.5995308.

  • Levin, A., Weiss, Y., Durand, F., & Freeman, W. T. (2011b). Understanding blind deconvolution algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12), 2354–2367.

    Article  Google Scholar 

  • Michaeli, T., & Irani, M. (2014). Blind deblurring using internal patch recurrence. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.) Computer Vision—ECCV 2014. Lecture Notes in Computer Science, vol. 8691 (pp. 783–798). Cham: Springer International Publishing. doi:10.1007/978-3-319-10578-9_51.

  • Möllenhoff, T., Strekalovskiy, E., Möller, M., & Cremers, D. (2014a). Low rank priors for color image regularization. In Proceedings of 10th International Conference, Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2015 (pp. 126–140). Hong Kong, China, January 13–16, 2015.

  • Möllenhoff, T., Strekalovskiy, E., Möller, M., & Cremers, D. (2014b). The primal-dual hybrid gradient method for semiconvex splittings. CoRR arXiv:1407.1723.

  • Ochs, P., Chen, Y., Brox, T., & Pock, T. (2014). ipiano: Inertial proximal algorithm for nonconvex optimization. SIAM Journal on Imaging Sciences, 7(2), 1388–1419.

    Article  MathSciNet  MATH  Google Scholar 

  • Perrone, D., & Favaro, P. (2014). Total variation blind deconvolution: The devil is in the details. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

  • Perrone, D., Diethelm, R., & Favaro, P. (2014). Blind deconvolution via lower-bounded logarithmic image priors. In Proceedings of 10th International Conference, Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2015 (pp. 112–125). Hong Kong, China, January 13–16, 2015.

  • Rockafellar, R. (1970). Convex analysis. Princeton, NJ: Princeton University Press.

    Book  MATH  Google Scholar 

  • Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60(1–4), 259–268. doi:10.1016/0167-2789(92)90242-F.

    Article  MathSciNet  MATH  Google Scholar 

  • Shan, Q., Jia, J., & Agarwala, A. (2008). High-quality motion deblurring from a single image. ACM Transactions on Graphics, 27, 73.

    Google Scholar 

  • Srivastava, A., Lee, A., Simoncelli, E. P., & Zhu, S. C. (2003). On advances in statistical modeling of natural images. Journal of Mathematical Imaging and Vision, 18, 17–33.

    Article  MathSciNet  MATH  Google Scholar 

  • Strekalovskiy, E., & Cremers, D. (2014). Real-time minimization of the piecewise smooth mumford-shah functional. Proceedings of Computer Vision 13th European Conference ECCV 2014, Zurich, Switzerland, September 6–12, 2014 Part II (pp. 127–141).

  • Strong, D., & Chan, T. (2003). Edge-preserving and scale-dependent properties of total variation regularization. Inverse Problems, 19(6), S165.

  • Sun, L., Cho, S., Wang, J., & Hays, J. (2013). Edge-based blur kernel estimation using patch priors. In 2013 IEEE International Conference on Computational Photography (ICCP) (pp. 1–8).

  • Wipf, D., & Zhang, H. (2013). Analysis of Bayesian blind deconvolution. Energy minimization methods in computer vision and pattern recognition (pp. 40–53). Berlin: Springer.

    Chapter  Google Scholar 

  • Wipf, D., & Zhang, H. (2014). Revisiting bayesian blind deconvolution. Journal of Machine Learning Research, 15, 3595–3634.

    MathSciNet  MATH  Google Scholar 

  • Xu, L., & Jia, J. (2010). Two-phase kernel estimation for robust motion deblurring. In Proceedings of the 11th European Conference on Computer Vision: Part I ECCV’10 (pp. 157–170). Berlin: Springer.

  • Xu, L., Zheng, S., & Jia, J. (2013). Unnatural l0 sparse representation for natural image deblurring. In 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1107–1114).

  • Zoran, D., Weiss, Y. (2011). From learning models of natural image patches to whole image restoration. In Proceedings of the 2011 International Conference on Computer Vision, ICCV ’11 (pp. 479–486). IEEE Computer Society Washington, DC, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Perrone.

Additional information

Communicated by Thomas Brox.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrone, D., Favaro, P. A Logarithmic Image Prior for Blind Deconvolution. Int J Comput Vis 117, 159–172 (2016). https://doi.org/10.1007/s11263-015-0857-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-015-0857-2

Keywords

Navigation