Skip to main content

Advertisement

Log in

Covariant Image Representation with Applications to Classification Problems in Medical Imaging

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Images are often considered as functions defined on the image domains, and as functions, their (intensity) values are usually considered to be invariant under the image domain transforms. This functional viewpoint is both influential and prevalent, and it provides the justification for comparing images using functional \(\mathbf {L}^p\)-norms. However, with the advent of more advanced sensing technologies and data processing methods, the definition and the variety of images has been broadened considerably, and the long-cherished functional paradigm for images is becoming inadequate and insufficient. In this paper, we introduce the formal notion of covariant images and study two types of covariant images that are important in medical image analysis, symmetric positive-definite tensor fields and Gaussian mixture fields, images whose sample values covary i.e., jointly vary with image domain transforms rather than being invariant to them. We propose a novel similarity measure between a pair of covariant images considered as embedded shapes (manifolds) in the ambient space, a Cartesian product of the image and its sample-value domains. The similarity measure is based on matching the two embedded low-dimensional shapes, and both the extrinsic geometry of the ambient space and the intrinsic geometry of the shapes are incorporated in computing the similarity measure. Using this similarity as an affinity measure in a supervised learning framework, we demonstrate its effectiveness on two challenging classification problems: classification of brain MR images based on patients’ age and (Alzheimer’s) disease status and seizure detection from high angular resolution diffusion magnetic resonance scans of rat brains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. A word of caution here would serve in avoiding any confusion further down in the rest of this paper. In Computer Vision and Statistics, the term covariance is commonly used to indicate the second order statistic and should not be confused with the term we use here namely, “covariant”. Further, in the field of tensor algebra, the terms, covariant and contra-variant tensors are commonly used and indicate the way these tensors transform under coordinate transformations. In this paper, covariant images simply refers to images whose value set covaries or jointly varies with transformations applied to the domain.

  2. A similar observation is also made in Sochen et al. (1998).

References

  • Alexander, D. C., Pierpaoli, C., Basser, P. J., & Gee, J. C. (2001). Spatial transformations of diffusion tensor magnetic resonance images. IEEE Transactions on Medical Imaging, 20(11), 1131–1139.

    Article  Google Scholar 

  • Ashburner, J., & Friston, K. J. (1999). Nonlinear spatial normalization using basis functions. Human Brain Mapping, 7, 254–266.

    Article  Google Scholar 

  • Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M., & Szeliski, R. (2011). A database and evaluation methodology for optical flow. International Journal of Computer Vision, 92, 1–31.

    Article  Google Scholar 

  • Barmpoutis, A., Vemuri, B. C., Shepherd, T. M., & Forder, J. R. (2007). Tensor splines for interpolation and approximation of DT-MRI with applications to segmentation of isolated rat hippocampi. IEEE Transaction on Medical Imaging, 26(11), 1537–1546.

    Article  Google Scholar 

  • Bates, D. M., Lindstrom, M. J., Wahba, G., & Yandell, B. S. (1987). GCVPACK-Routines for generalized cross validation. Communications in Statistics—Simulation and Computation, 16(1), 263–297.

    Article  MathSciNet  MATH  Google Scholar 

  • Beg, M. F., Miller, M. I., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings vis geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2), 139–157.

    Article  Google Scholar 

  • Cachier, P., & Rey, D. (2000). Symmetrization of the non-rigid registration problem using inversion-invariant energies: Application to multiple sclerosis. International conference on medical image computing and computer assisted intervention, MICCAI (pp. 472–481).

  • Cachier, P., Bardinet, E., Mormont, D., Pennec, X., & Ayache, N. (2003). Iconic feature based nonrigid registration: The PASHA algorithm. Computer Vision and Image Understanding, 89(2–3), 272–298.

    Article  MATH  Google Scholar 

  • Cao, Y., Miller, M.I., Mori, S., Winslow, R.L., & Younes, L. (2006). Diffeomorphic matching of diffusion tensor images, Proceedings CVPR (pp. 17–22).

  • Chen, T., Rangarajan, A., & Vemuri, B. C. (2010). CAVIAR: Classification via aggregated regression and its application in classifying the OASIS brain database. IEEE international symposium on biomedical imaging (pp. 1337–1340)

  • Cheng, G., Vemuri, B.C., Carney, P.R., & Marcei, T.H. (2009). Non-rigid registration of high angular diffusion images represented by gaussian mixture fields. International conference on medical image computing and computer assisted intervention, MICCAI (1) (pp. 190–197).

  • Christensen, G. E., Rabbitt, R. D., & Miller, M. I. (1996). Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing, 5(10), 1435–1447.

    Article  Google Scholar 

  • Christensen, G. E., & Johnson, H. J. (2001). Consistent image registration. IEEE Transactions on Medical Imaging, 20(7), 568–582.

  • Christensen, G. E., & Johnson, H. J. (2003). Invertibility and transitivity analysis for non-rigid image registration. Journal of Electronic Imaging, 12(1), 106–117.

    Article  Google Scholar 

  • Coifman, R. R., Kafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F., et al. (2005). Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proceedings of the National Academy Science, 102(21), 7426–7432.

    Article  Google Scholar 

  • Coifman, R. R., & Lafon, S. (2006). Diffusion maps. Applied and Computational Harmonic Analysis, 21, 5–30.

    Article  MathSciNet  MATH  Google Scholar 

  • DoCarmo, M. P. (1992). Riemannian geometry. Boston: Birkhauser.

    Google Scholar 

  • Gur, Y., & Sochen, N. (2009). Visualization and processing of tensor fields: advances and perspectives (pp. 325–340)., Coordinate-based diffusion over the space of symmetric positive-definite matrices Berlin: Springer.

    Book  Google Scholar 

  • Jian, B., Vemuri, B. C., Ozarslan, E., Carney, P. R., & Mareci, T. H. (2007). A novel tensor distribution model for the diffusion-weighted MR signal. NeuroImage, 37, 164–176.

    Article  Google Scholar 

  • Jian, B., & Vemuri, B. C. (2007). A unified computational framework for deconvolution to reconstruct multiple fibers form diffusion weighted MRI. IEEE Transactions on Medical Imaging, 26(11), 1464–1471.

    Article  Google Scholar 

  • Johnson, H. J., & Christensen, G. E. (2002). Consistent landmark and intensity-based image registration. IEEE Transactions on Medical Imaging, 21(5), 450–461.

    Article  Google Scholar 

  • Joshi, S., Davis, B., Jomier, M., & Gerig, G. (2004). Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage, 23, 151–160.

    Article  Google Scholar 

  • Kimmel, R., & Sochen N.A. (1999). Geometric-variational approach for color image enhancement and segmentation, Scale-Space (pp. 294–305).

  • Kimmel, R., Malladi, R., & Sochen, N. A. (2000). Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. International Journal of Computer Vision, 39(2), 111–129.

    Article  MATH  Google Scholar 

  • Koenderink, J., & van Doorn, A. J. (2002). Image processing done right. Proceedings of ECCV, 1, (pp. 158–172).

  • Kroon, D.J., & Slump, K. (2009). MRI modality transformation in Demon registration. IEEE international symposium on biomedical imaging (pp. 963–966).

  • Kurtek, S., Klassen, E., Ding, Z., Srivastava, A. (2010). A novel Riemannian framework for shape analysis of 3D objects, Proceedings of CVPR, (pp. 1625–1632).

  • Kurtek, S., Klassen, E., Ding, Z., Avison, M. J., & Srivastava, A. (2011). Parameterization-invariant shape statistics and probabilistic classification of anatomical surfaces. IEEE Transactions on Medical Imaging, 30(3), 49–858.

    Article  Google Scholar 

  • Litke, N., Droske, M., Rumpf, M., & P. Schröder. (2005). An image processing approach to surface matching, symposium on geometry processing, (pp. 207–216).

  • Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Moris, J. C., & Buckner, R. L. (2007). Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, non-demented, and demented older adults. Journal of Cognitive Neuroscience, 19, 1498–1507.

    Article  Google Scholar 

  • Moakher, M. (2006). A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM Journal on Matrix Analysis and Applications, 26(3), 735–747.

    Article  MathSciNet  Google Scholar 

  • Seo, D., & Vemuri, B. (2009). Complex diffusion on scalar and vector valued image graphs, Proceedings of EMMCVPR (pp. 98–111).

  • Sochen, N. A., Kimmel, R., & Malladi, R. (1998). A general framework for low level vision. IEEE Transactions on Image Processing, 7(3), 310–318.

  • Tagare, H. D., Groisser, D., & Skrinjar, O. (2009). Symmetric non-rigid registration: a geometric theory and some numerical techniques. Journal of Mathematical Imaging and Vision, 34, 61–88.

    Article  MathSciNet  Google Scholar 

  • Tuch, D.S. (2002). Diffusion MRI of complex tissue structure, PhD thesis, MIT.

  • Vercauteren, T., Pennec, X., Perchant, A., & Ayache, N. (2007). Non-parametric diffeomorphic image registration with the Demons algorithm, International conference on medical image computing and computer assisted intervention, MICCAI 2, (pp. 319–326).

  • Xie, Y., Vemuri, B.C., & Ho, J. (2010). Statistical analysis of tensor fields. International conferences on medical image computing and computer assisted intervention, MICCAI (1) (pp. 682–689).

  • Yanovsky, I., Thompson, P.M., Osher, S., & Leow, A.D. (2007). Topology preserving Log-unbiased nonlinear image registration: Theory and implementation. Proceedings of CVPR (pp. 1–8).

  • Zhang, P., Wee, C.-Y., Niethammer, M., Shen, D., & Yap, P.-T. (2013). Large Deformation Image Classification Using Generalized Locality-Constrained Linear Coding. International conference on medical image computing and computer assisted intervention, MICCAI.

Download references

Acknowledgments

This research was supported in part by NSF Grant IIS 0916001 to JH and BCV and the NIH grant NS066340 to BCV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baba C. Vemuri.

Additional information

Communicated by M. Hebert.

Appendices

Appendix 1

In this section, we show how to factor out DSC basis functions in formulating the gradient descent direction w.r.t. the DSC coefficients. Here, we only show details of derivatives w.r.t. \({\mathcal {A}}_{nml}\). Derivatives w.r.t. \(\mathcal {B}_{nml}\) and \(\mathcal {C}_{nml}\) can be done in the same way described in the following. In this section we consider Eq. 14 and in the following sections Eqs. 15 and Eq. 16 will be considered. Here, we only consider the image graphs of Gaussian mixture fields.

Equation 14 is rewritten as

$$\begin{aligned}&\frac{\partial }{\partial {\mathcal {A}}_{nml}}{\mathbf {Dist}}^2(\mathbf {X}_{1\mathcal {R}},\mathbf {X}_2 \circ \gamma ) \nonumber \\&\quad =\frac{\partial }{\partial {\mathcal {A}}_{nml}} ({\uplambda }\underbrace{(U^{2}+V^{2}+X^{2})}_{Part1} + \underbrace{{\mathbf {Dist}}_F^2(I_{1\mathcal {R}},I_{2} \circ \gamma )}_{Part2})\nonumber \\ \end{aligned}$$
(44)

In the Part1 of Eq. 44, factoring out basis functions is very straight forward, therefore, we only show how to do this in the Part2 below.

$$\begin{aligned}&\frac{\partial }{\partial {\mathcal {A}}_{nml}}{\mathbf {Dist}}_F^2(I_{1\mathcal {R}},I_{2} \circ \gamma ) \nonumber \\&\quad =\varvec{\eta }^{\top }\frac{\partial \mathbf A _{\mathcal {R}}}{\partial {\mathcal {A}}_{nml}}\varvec{\eta } -2\varvec{\eta }^{\top }\frac{\partial \mathbf C _{\mathcal {R}}}{\partial {\mathcal {A}}_{nml}} (\varvec{\rho } \circ \gamma ) \nonumber \\&\qquad + 2(\varvec{\rho } \circ \gamma )^{\top }\mathbf B \frac{\partial (\varvec{\rho } \circ \gamma )}{\partial {\mathcal {A}}_{nml}}-2\varvec{\eta }^{\top }\mathbf C _{\mathcal {R}} \frac{\partial (\varvec{\rho } \circ \gamma )}{\partial {\mathcal {A}}_{nml}}, \end{aligned}$$
(45)

Factoring out basis functions in Eq. 45 requires evaluation Eqs. 40, 41, and 42 explicitly. First, we need to evaluated derivatives of Jacobian matrix, \(\mathbf {J}\). Given

$$\begin{aligned} \mathbf {J} = \left( \begin{array}{ccc} 1+U_{u} &{} U_{v} &{} U_{w} \\ V_{u} &{} 1+V_{v} &{} V_{w} \\ W_{u} &{} W_{v} &{} 1+W_{w} \end{array} \right) , \end{aligned}$$
(46)

the first order derivative w.r.t. \({\mathcal {A}}_{nml}\) is given

$$\begin{aligned} \frac{\partial \mathbf {J}}{\partial {\mathcal {A}}_{nml}} = \left( \begin{array}{ccc} \frac{\partial }{\partial u} {\varPhi }_{U_{nml}} &{} \frac{\partial }{\partial v} {\varPhi }_{U_{nml}}&{} \frac{\partial }{\partial w} {\varPhi }_{U_{nml}} \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \end{array} \right) . \end{aligned}$$
(47)

Once we notice that

$$\begin{aligned}&\frac{\partial \mathbf {J}}{\partial {\mathcal {A}}_{nml}} \mathbf {u}_{i{\mathcal {R}}} \nonumber \\&\quad = \left( \begin{array}{c} \underbrace{u_{i{\mathcal {R}} 1}\frac{\partial }{\partial u} {\varPhi }_{U_{nml}} + u_{i{\mathcal {R}} 2}\frac{\partial }{\partial v} {\varPhi }_{U_{nml}} +u_{i{\mathcal {R}} 3}\frac{\partial }{\partial w} {\varPhi }_{U_{nml}}}_{{\varDelta }_i} \\ 0 \\ 0 \end{array} \right) ,\nonumber \\ \end{aligned}$$
(48)

where the subscript i of \({\varDelta }\) is same with i of \(\mathbf {u}_{i{\mathcal {R}}}\), and rewrite \(\mathbf {J}^{-1}\) as

$$\begin{aligned} \mathbf {J}^{-1} = \left( \begin{array}{ccc} J_{11}^{-1} &{} J_{12}^{-1} &{} J_{13}^{-1} \\ J_{21}^{-1} &{} J_{22}^{-1} &{} J_{23}^{-1} \\ J_{31}^{-1} &{} J_{32}^{-1} &{} J_{33}^{-1} \end{array} \right) = \left( \begin{array}{c|c|c} &{} &{} \\ \mathbf {\mathbf {J}^{-1}_1} &{} \mathbf {\mathbf {J}^{-1}_2} &{} \mathbf {\mathbf {J}^{-1}_3} \\ &{} &{} \end{array} \right) \end{aligned}$$
(49)

then, we can factor out basis functions in Eq. 43 as

$$\begin{aligned} \frac{\partial \mathbf {u}_{i{\mathcal {R}}} }{\partial {\mathcal {A}}_{nml}} = ( \mathbf {J}^{-1}_1 - ( \mathbf {u}_{i{\mathcal {R}}}^{\top } \mathbf {J}^{-1}_1 ) \mathbf {u}_{i{\mathcal {R}}} ){\varDelta }_i \end{aligned}$$
(50)

and in the same way,

$$\begin{aligned} \frac{\partial \mathbf {u}_{i{\mathcal {R}}} }{\partial \mathcal {B}_{nml}}= & {} ( \mathbf {J}^{-1}_2 - ( \mathbf {u}_{i{\mathcal {R}}}^{\top } \mathbf {J}^{-1}_2 ) \mathbf {u}_{i{\mathcal {R}}} ){\varDelta }_i \end{aligned}$$
(51)
$$\begin{aligned} \frac{\partial \mathbf {u}_{i{\mathcal {R}}} }{\partial \mathcal {C}_{nml}}= & {} ( \mathbf {J}^{-1}_3 - ( \mathbf {u}_{i{\mathcal {R}}}^{\top } \mathbf {J}^{-1}_3 ) \mathbf {u}_{i{\mathcal {R}}}){\varDelta }_i . \end{aligned}$$
(52)

With Eq. 50, we can rewrite Eqs. 40 and 41 as

$$\begin{aligned}&\left. \frac{\partial \mathbf A _{\mathcal {R}}}{\partial {\mathcal {A}}_{nml}} \right| _{i,j} \nonumber \\&\quad = a_{ij}\mathbf {u}_{i{\mathcal {R}}}^{\top }\mathbf {u}_{j{\mathcal {R}}} \big [ \mathbf {u}_{i{\mathcal {R}}}^{\top } ( \mathbf {J}^{-1}_1 - ( \mathbf {u}_{j{\mathcal {R}}}^{\top } \mathbf {J}^{-1}_1 ) \mathbf {u}_{j{\mathcal {R}}} ){\varDelta }_j \nonumber \\&\qquad + ( \mathbf {J}^{-1}_1 - ( \mathbf {u}_{i{\mathcal {R}}}^{\top } \mathbf {J}^{-1}_1 ) \mathbf {u}_{i{\mathcal {R}}} )^\top \mathbf {u}_{j{\mathcal {R}}}^{\top } {\varDelta }_i \big ] \nonumber \\&\quad \doteq {\mathcal {J}}_{ij}^1 {\varDelta }_j +\mathcal J_{ij}^2 {\varDelta }_i \end{aligned}$$
(53)

and

$$\begin{aligned}&\left. \frac{\partial \mathbf C _{\mathcal {R}}}{\partial {\mathcal {A}}_{nml}}\right| _{i,j} \nonumber \\&\quad = b_{ij}\mathbf {u}_{i{\mathcal {R}}}^{\top }\mathbf {v}_{j} ( \mathbf {J}^{-1}_1 - ( \mathbf {u}_{i{\mathcal {R}}}^{\top } \mathbf {J}^{-1}_1 ) \mathbf {u}_{i{\mathcal {R}}} ) ^\top \mathbf {v}_{j} {\varDelta }_i \nonumber \\&\quad \doteq \mathcal {Z}_{ij} {\varDelta }_i , \end{aligned}$$
(54)

where

$$\begin{aligned} a_{ij}= & {} \frac{\beta }{(2\pi det({\varSigma }_{i\mathcal R}+{\varSigma }_{j{\mathcal {R}}}))^{3/2}} \ \ , \\ b_{ij}= & {} \frac{\beta }{(2\pi det({\varSigma }_{i{\mathcal {R}}}+{\varGamma }_{j{\mathcal {R}}}))^{3/2}} . \end{aligned}$$

Finally we factor out basis functions and their derivatives in Eq. 45 as follows.

$$\begin{aligned}&\varvec{\eta }^{\top }\frac{\partial \mathbf A _{\mathcal {R}}}{\partial {\mathcal {A}}_{nml}}\varvec{\eta } -2\varvec{\eta }^{\top }\frac{\partial \mathbf C _{\mathcal {R}}}{\partial {\mathcal {A}}_{nml}} (\varvec{\rho } \circ \gamma ) \nonumber \\&\quad = \eta _i \left( \frac{\partial \mathbf A _{\mathcal {R}}}{\partial {\mathcal {A}}_{nml}} \right) _{ij} \eta _j -2\eta _i \left( \frac{\partial \mathbf C _{\mathcal {R}}}{\partial {\mathcal {A}}_{nml}} \right) _{ij} (\varvec{\rho } \circ \gamma )_j \nonumber \\&\quad = \eta _i({\mathcal {J}}_{ij}^1 {\varDelta }_j +{\mathcal {J}}_{ij}^2 {\varDelta }_i)\eta _j -2\eta _i \mathcal {Z}_{ij} (\varvec{\rho } \circ \gamma )_j {\varDelta }_i \nonumber \\&\quad = \eta _i[({\mathcal {J}}_{ij}^1 u_{j\mathcal {R}1}+{\mathcal {J}}_{ij}^2 u_{i\mathcal {R}1})\eta _j -2 \mathcal {Z}_{ij}(\varvec{\rho } \circ \gamma )_j u_{i\mathcal {R}1}] \frac{\partial {\varPhi }_{U_{nml}}}{\partial u} \nonumber \\&\qquad +\,\eta _i[({\mathcal {J}}_{ij}^1 u_{j\mathcal {R}2}+{\mathcal {J}}_{ij}^2 u_{i\mathcal {R}2})\eta _j -2 \mathcal {Z}_{ij}(\varvec{\rho } \circ \gamma )_j u_{i\mathcal {R}2}] \frac{\partial {\varPhi }_{U_{nml}}}{\partial v} \nonumber \\&\qquad +\,\eta _i[({\mathcal {J}}_{ij}^1 u_{j\mathcal {R}3}+{\mathcal {J}}_{ij}^2 u_{i\mathcal {R}3})\eta _j -2 \mathcal {Z}_{ij}(\varvec{\rho } \circ \gamma )_j u_{i\mathcal {R}3}] \frac{\partial {\varPhi }_{U_{nml}}}{\partial w}\nonumber \\ \end{aligned}$$
(55)
$$\begin{aligned}&2(\varvec{\rho } \circ \gamma )^{\top }\mathbf B \frac{\partial (\varvec{\rho } \circ \gamma )}{\partial {\mathcal {A}}_{nml}}-2\varvec{\eta }^{\top }\mathbf C _{\mathcal {R}} \frac{\partial (\varvec{\rho } \circ \gamma )}{\partial {\mathcal {A}}_{nml}}\nonumber \\&\quad = 2((\varvec{\rho } \circ \gamma )^{\top }\mathbf B - \varvec{\eta }^{\top }\mathbf C _{\mathcal {R}}) \left. \frac{\partial \varvec{\rho } }{\partial u } \right| _{u+U} {\varPhi }_{U_{nml}} \end{aligned}$$
(56)

Appendix 2

In this section, we show how to evaluate Eqs. 15 and 16. Denote \(J_{\gamma }\) the determinant of the Jacobian, \(\mathbf {J}_{\gamma }\) defined in Eq. 7. Its derivative w.r.t. \({\mathcal {A}}_{nml}\) defined in Eq. 12 can be written as

$$\begin{aligned} \frac{\partial }{\partial {\mathcal {A}}_{nml}} J_{\gamma }= & {} (1+V_v+W_w+V_vW_w-V_wW_v)\frac{\partial {\varPhi }_{U_{nml}}}{\partial u} \nonumber \\&\quad +(V+wW+u-V_uW_w-V_u)\frac{\partial {\varPhi }_{U_{nml}}}{\partial v} \nonumber \\&\quad +(V_uW_v-V_vW_u-W_u)\frac{\partial {\varPhi }_{U_{nml}}}{\partial w} \end{aligned}$$
(57)

Given the derivative of \(\mathbf {J}_{\gamma }\), evaluations of Eqs. 15 and 16 is straightforward:

$$\begin{aligned}&\frac{\partial }{\partial {\mathcal {A}}_{nml}} \sqrt{\kappa _2({\varOmega }_{2}\circ \gamma )} J_{\gamma } \nonumber \\&\quad =\left. \frac{1}{2\sqrt{\kappa _{2}}}\frac{\partial \kappa _{2}}{\partial u} \right| _{u+U} {\varPhi }_{U_{nml}} J_{\gamma } + \sqrt{\kappa _{2}} \frac{\partial J_{\gamma } }{\partial {\mathcal {A}}_{nml}} , \end{aligned}$$
(58)

and

$$\begin{aligned}&\frac{\partial }{\partial {\mathcal {A}}_{nml}}(J_{\gamma }-1)\log (J_{\gamma }) \nonumber \\&\quad =\left[ \log (J_{\gamma }) + 1 - \frac{1}{J_{\gamma }} \right] \frac{\partial }{\partial {\mathcal {A}}_{nml}}J_{\gamma }. \end{aligned}$$
(59)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, D., Ho, J. & Vemuri, B.C. Covariant Image Representation with Applications to Classification Problems in Medical Imaging. Int J Comput Vis 116, 190–209 (2016). https://doi.org/10.1007/s11263-015-0841-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-015-0841-x

Keywords

Navigation