Skip to main content
Log in

Pre-organizing Shape Instances for Landmark-Based Shape Correspondence

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The major challenge in constructing a statistical shape model for a structure is shape correspondence, which identifies a set of corresponded landmarks across a population of shape instances to accurately estimate the underlying shape variation. Both global or pairwise shape-correspondence methods have been developed to automatically identify the corresponded landmarks. For global methods, landmarks are found by optimizing a comprehensive objective function that considers the entire population of shape instances. While global methods can produce very accurate shape correspondence, they tend to be very inefficient when the population size is large. For pairwise methods, all shape instances are corresponded to a given template independently. Therefore, pairwise methods are usually very efficient. However, if the population exhibits a large amount of shape variation, pairwise methods may produce very poor shape correspondence. In this paper, we develop a new method that attempts to address the limitations of global and pairwise methods. In particular, we first construct a shape tree to globally organize the population of shape instances by identifying similar shape instance pairs. We then perform pairwise shape correspondence between such similar shape instances with high accuracy. Finally, we combine these pairwise correspondences to achieve a unified correspondence for the entire population of shape instances. We evaluate the proposed method by comparing its performance to five available shape correspondence methods, and show that the proposed method achieves the accuracy of a global method with the efficiency of a pairwise method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amit, Y., & Geman, D. (1997). Shape quantization and recognition with randomized trees. Neural Computation, 9, 1545–1588.

    Article  Google Scholar 

  • Basri, R., Costa, L., Geiger, D., & Jacobs, D. (1995). Determining the similarity of deformable shapes. Vision Research, 38, 135–143.

    Google Scholar 

  • Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(24), 509–522.

    Article  Google Scholar 

  • Bookstein, F. (1989). Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6), 567–585.

    Article  MATH  Google Scholar 

  • Bookstein, F. (1991). Morphometric tools for landmark data. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Bookstein, F. (1997). Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Medical Image Analysis, 1(3), 225–243.

    Article  Google Scholar 

  • Bruckstein, A., Katzir, N., Lindenbaum, M., & Porat, M. (1992). Similarity-invariant signatures for partially occluded planar shapes. International Journal of Computer Vision, 7(3), 271–285.

    Article  Google Scholar 

  • Catmull, E., & Rom, R. (1974). A class of local interpolating splines. Computer Aided Geometric Design, 317–326.

  • Chen, L., Feris, R., & Turk, M. (2008). Efficient partial shape matching using smith-waterman algorithm. In IEEE computer vision and pattern recognition workshops (pp. 1–6).

    Google Scholar 

  • Cootes, T., Taylor, C., Cooper, D., & Graham, J. (1995). Active shape models—their training and application. Computer Vision and Image Understanding, 61(1), 38–59.

    Article  Google Scholar 

  • Cormen, T., Leiserson, C., & Rivest, R. (1990). Introduction to algorithms. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Cristinacce, D., Butcher, N., & Cootes, T. (2008). Facial motion analysis using clustered shortest path tree registration. In International workshop on machine learning for vision-based motion analysis, European conference on computer vision (ECCV).

    Google Scholar 

  • Dalal, P., Shi, F., Shen, D., & Wang, S. (2010). Multiple cortical surface correspondence using pairwise shape similarity. In International conference on medical image computing and computer assisted intervention (Vol. 1, pp. 349–358).

    Google Scholar 

  • Davies, R. (2002). Learning shape: optimal models for analysing natural variability. Dissertation, University of Manchester.

  • Davies, R., Twining, C., Cootes, T., Waterton, J., & Taylor, C. (2002). A minimum description length approach to statistical shape modeling. IEEE Transactions on Medical Imaging, 21(5), 525–537.

    Article  Google Scholar 

  • Davies, R., Twining, C., & Taylor, C. (2008). Statistical models of shape: optimization and evaluation. London: Springer.

    Google Scholar 

  • DiIanni, M., Diekrnann, R., Laling, R., Schulze, J., & Tschoeke, S. (1996). Simulated annealing and genetic algorithms for shape detection. Control and Cybernetics, 25(1), 159–175.

    Google Scholar 

  • Dryden, I., & Mardia, K. (1998). The statistical analysis of shape. London: Wiley.

    Google Scholar 

  • Duta, N., & Sonka, M. (1998). Segmentation and interpretation of MR brain images: an improved active shape model. IEEE Transactions on Medical Imaging, 17(6), 1049–1062.

    Article  Google Scholar 

  • Frangi, A., Rueckert, D., Schnabel, J., & Niessen, W. (2001). Automatic 3D ASM construction via atlas-based landmarking and volumetric elastic registration. In Information processing in medical imaging conference (pp. 77–91).

    Google Scholar 

  • Gertz, M. E., & Wright, S. J. (2001). Object-oriented software for quadratic programming. ACM Transactions on Mathematical Software, 29, 58–81.

    Article  MathSciNet  Google Scholar 

  • van Ginneken, B., Frangi, A., Staal, J., ter Haar Romeny, B., & Viergever, M. (2002). Active shape model segmentation with optimal features. IEEE Transactions on Medical Imaging, 21(8), 924–933.

    Article  Google Scholar 

  • Gonzalez-Jimenez, D., & Alba-Castro, J. (2007). Toward pose-invariant 2-D face recognition through point distribution models and facial symmetry. IEEE Transactions on Information Forensics and Security, 2(3), 413–429.

    Article  MathSciNet  Google Scholar 

  • Gower, J., & Dijksterhuis, G. (2004). Procrustes problems. London: Oxford University Press.

    Book  MATH  Google Scholar 

  • Heimann, T., & Meinzer, H. P. (2009). Statistical shape models for 3d medical image segmentation: a review. Medical Image Analysis, 13(4), 543–563.

    Article  Google Scholar 

  • Heimann, T., Wolf, I., Williams, T., & Meinzer, H. P. (2005). 3d active shape models using gradient descent optimization of description length. In Information processing in medical imaging conference (pp. 566–577).

    Chapter  Google Scholar 

  • Hill, A., & Taylor, C. J. (1994). Automatic landmark generation for point distribution models. In British machine vision conference (Vol. 2, pp. 429–438).

    Google Scholar 

  • Karlsson, J., & Ericsson, A. (2006). A ground truth correspondence measure for benchmarking. In International conference on pattern recognition (Vol. 3, pp. 568–573).

    Google Scholar 

  • Lanitis, A., Taylor, C., & Cootes, T. (1995). Automatic face identification system using flexible appearance models. Image and Vision Computing, 13(5), 393–401.

    Article  Google Scholar 

  • Latecki, L. J., Megalooikonomou, V., Wang, Q., & Yu, D. (2007). An elastic partial shape matching technique. Pattern Recognition, 40(11), 3069–3080.

    Article  MATH  Google Scholar 

  • Lekadir, K., Merrifield, R., & Yang, G. (2007). Outlier detection and handling for robust 3-D active shape models search. IEEE Transactions on Medical Imaging, 26(2), 212–222.

    Article  Google Scholar 

  • Leventon, M., Grimson, E., & Faugeras, O. (2000). Statistical shape influence in geodesic active contours. In IEEE conference on computer vision and pattern recognition (pp. 316–323).

    Google Scholar 

  • Marsland, S., Twining, C., & Taylor, C. (2008). A minimum description length objective function for groupwise non-rigid image registration. Image and Vision Computing, 26(3), 333–346.

    Article  Google Scholar 

  • Matthews, S. B. I., & Schneider, J. (2004). Automatic construction of active appearance models as an image coding problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(10), 1380–1384.

    Article  Google Scholar 

  • Meier, D., & Fisher, E. (2002). Parameter space warping: shape-based correspondence between morphologically different objects. IEEE Transactions on Medical Imaging, 21, 31–47.

    Article  Google Scholar 

  • Milborrow, S., & Nicolls, F. (2008). Locating facial features with an extended active shape model. In European conference on computer vision (pp. 504–513).

    Google Scholar 

  • Munsell, B. C., Dalal, P., & Wang, S. (2008). Evaluating shape correspondence for statistical shape analysis: a benchmark study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(11), 2023–2039.

    Article  Google Scholar 

  • Munsell, B., Temlyakov, A., & Wang, S. (2009). Fast multiple shape correspondence by pre-organizing shape instances. In IEEE conference on computer vision and pattern recognition (pp. 840–847).

    Chapter  Google Scholar 

  • Ozcan, E., & Mohan, C. K. (1997). Partial shape matching using genetic algorithms. Pattern Recognition Letters, 18, 987–992.

    Article  Google Scholar 

  • Powell, M. (1995). A thin plate spline method for mapping curves into curves in two dimensions. In Proc. computational techniques and applications (pp. 43–57).

    Google Scholar 

  • Richardson, T., & Wang, S. (2005). Nonrigid shape correspondence using landmark sliding, insertion and deletion. In International conference on medical image computing and computer assisted intervention (pp. II–435–442).

    Chapter  Google Scholar 

  • Rueckert, D., Frangi, A., & Schnabel, J. (2001). Automatic construction of 3D statistical deformation models using non-rigid registration. In International conference on medical image computing and computer assisted intervention (pp. 77–84).

    Google Scholar 

  • Saber, E., Xu, Y., & Tekalp, A. (2005). Partial shape representation by sub-matrix matching for partial matching guided image labeling. Pattern Recognition, 38, 1560,573.

    Article  Google Scholar 

  • Schmidt, F., Farin, D., & Cremers, D. (2007). Fast matching of planar shapes in sub-cubic runtime. In International conference on computer vision (pp. 1–6).

    Google Scholar 

  • Seshadri, K., & Savvides, M. (2009). Robust modified active shape model for automatic facial landmark annotation of frontal faces. In IEEE international conference on biometrics: theory, applications and systems (pp. 1–8).

    Chapter  Google Scholar 

  • Shenton, M., Gerig, G., McCarley, R., Szvackely, G., & Kikinis, R. (2002). Amygdala-hippocampal shape differences in schizophrenia: the application of 3d shape models to volumetric MR data. Psychiatry Research. Neuroimaging, 115, 15–35.

    Article  Google Scholar 

  • Styner, M., Rajamani, K., Nolte, L. P., Zsemlye, G., Szekely, G., Taylor, C., & Davies, R. (2003). Evaluation of 3D correspondence methods for model building. In Information processing in medical imaging conference (pp. 63–75).

    Chapter  Google Scholar 

  • Thodberg, H. (2003). Minimum description length shape and appearance models. In Information processing in medical imaging conference (pp. 51–62).

    Chapter  Google Scholar 

  • Veltkamp, R., & Hagedoorn, M. (1999). State of the art in shape matching. Tech. Rep. Technical Report UU-CS-1999-27, Utrecht.

  • Veltkamp, R., & Tanase, M. (2005). Part-based shape retrieval. In ACM multimedia (pp. 543–546).

    Google Scholar 

  • Wang, S., Kubota, T., & Richardson, T. (2004). Shape correspondence through landmark sliding. In IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 143–150).

    Google Scholar 

  • Xie, J., & Heng, P. (2005). Shape modeling using automatic landmarking. In International conference on medical image computing and computer assisted intervention (pp. II–709–716).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent C. Munsell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munsell, B.C., Temlyakov, A., Styner, M. et al. Pre-organizing Shape Instances for Landmark-Based Shape Correspondence. Int J Comput Vis 97, 210–228 (2012). https://doi.org/10.1007/s11263-011-0477-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-011-0477-4

Keywords

Navigation