Skip to main content
Log in

Generalised Nonlocal Image Smoothing

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We propose a discrete variational approach for image smoothing consisting of nonlocal data and smoothness constraints that penalise general dissimilarity measures defined on image patches. One of such dissimilarity measures is the weighted L 2 distance between patches. In such a case we derive an iterative neighbourhood filter that induces a new similarity measure in the photometric domain. It can be regarded as an extended patch similarity measure that evaluates not only the patch similarity of two chosen pixels, but also the similarity of their corresponding neighbours. This leads to a more robust smoothing process since the pixels selected for averaging are more coherent with the local image structure. By slightly modifying the way the similarities are computed we obtain two related filters: The NL-means filter of Buades et al. (SIAM Multiscale Model. Simul. 4(2):490–530, 2005b) and the NDS filter of Mrázek et al. (Geometric Properties for Incomplete Data, Computational Imaging and Vision, vol. 31, pp. 335–352, Springer, Dordrecht, 2006). In fact, the proposed approach can be considered as a generalisation of the latter filter to the space of patches. We also provide novel insights into relations of the NDS filter with diffusion/regularisation methods as well as with some recently proposed graph regularisation techniques. We evaluate our method for the task of denoising greyscale and colour images degraded with Gaussian and salt-and-pepper noise, demonstrating that it compares very well to other more sophisticated approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubert, G., & Kornprobst, P. (2006). Mathematical problems in image processing: partial differential equations and the calculus of variations (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Aurich, V., & Weule, J. (1995). Non-linear Gaussian filters performing edge preservating diffusion. In G. Sagerer, S. Posch, & F. Kummert (Eds.), Informatik Aktuell, Mustererkennung (pp. 538–545). Berlin: Springer.

    Google Scholar 

  • Awate, S. P., & Whitaker, R. T. (2005). Higher-order image statistics for unsupervised, information-theoretic, adaptive, image filtering. In Proc. of the 2005 IEEE computer society conference on computer vision and pattern recognition (Vol. 2, pp. 44–51). Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • Awate, S. P., & Whitaker, R.T. (2006). Unsupervised, information-theoretic, adaptive image filtering for image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(3), 364–376.

    Article  Google Scholar 

  • Azzabou, N., Paragios, N., Guichard, F., & Cao, F. (2007). Variable bandwidth image denoising using image-based noise models. In Proc. of the 2007 IEEE computer society conference on computer vision and pattern recognition (pp. 1–7). Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • Bar, L., Kiryati, N., & Sochen, N. (2006). Image deblurring in the presence of impulsive noise. International Journal of Computer Vision, 70(3), 279–298.

    Article  Google Scholar 

  • Barash, D., & Comaniciu, D. (2004). A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Image and Video Computing, 22(1), 73–81.

    Article  Google Scholar 

  • Bertero, M., Poggio, T. A., & Torre, V. (1988). Ill-posed problems in early vision. Proceedings of the IEEE, 76, 869–889.

    Article  Google Scholar 

  • Bilcu, R. C., & Vehvilainen, M. (2007). Fast nonlocal means for image denoising. In R. A. Martin, J. M. DiCarlo, & N. Sampat (Eds.), Proc. of SPIE : Vol. 6502. Digital photography III (p. 65020R). Bellingham: SPIE.

    Google Scholar 

  • Bougleux, S., Elmoataz, A., & Melkemi, M. (2007). Discrete regularization on weighted graphs for image and mesh filtering. In F. Sgallari, A. Murli, & N. Paragios (Eds.), Lecture notes in computer science : Vol. 4485. Scale space and variational methods in computer vision (pp. 128–139). Berlin: Springer.

    Chapter  Google Scholar 

  • Bougleux, S., Elmoataz, A., & Melkemi, M. (2009). Local and nonlocal discrete regularization on weighted graphs for image and mesh processing. International Journal of Computer Vision, 84(2), 220–236.

    Article  Google Scholar 

  • Brouwer, L. E. J. (1911). Über Abbildungen von Mannigfaltigkeiten. Mathematische Annalen, 71(1), 97–115.

    Article  MathSciNet  Google Scholar 

  • Brox, T., & Cremers, D. (2007). Iterated nonlocal means for texture restoration. In F. Sgallari, A. Murli, & N. Paragios (Eds.), Lecture notes in computer science : Vol. 4485. Scale space and variational methods in computer vision (pp. 13–24). Berlin: Springer.

    Chapter  Google Scholar 

  • Brox, T., Kleinschmidt, O., & Cremers, D. (2008). Efficient nonlocal means for denoising of textural patterns. IEEE Transactions on Image Processing, 17(7), 1083–1092.

    Article  MathSciNet  Google Scholar 

  • Buades, A., Coll, B., & Morel, J.-M. (2005a). A non-local algorithm for image denoising. In Proc. of the 2005 IEEE computer society conference on computer vision and pattern recognition (Vol. 2, pp. 60–65). Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • Buades, A., Coll, B., & Morel, J.-M. (2005b). A review of image denoising algorithms, with a new one. SIAM Multiscale Modeling and Simulation, 4(2), 490–530.

    Article  MATH  MathSciNet  Google Scholar 

  • Buades, A., Coll, B., & Morel, J.-M. (2006). Neighborhood filters and PDEs. Numerische Mathematik, 105(1), 1–34.

    Article  MATH  MathSciNet  Google Scholar 

  • Cai, J.-F., Chan, R. H., & Nikolova, M. (2008). Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise. Inverse Problems and Imaging, 2(2), 187–204.

    MATH  MathSciNet  Google Scholar 

  • Chan, R. H., Ho, C. W., & Nikolova, M. (2005). Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Transactions on Image Processing, 14(10), 1479–1485.

    Article  Google Scholar 

  • Chan, T. F., & Shen, J. (2005). Image processing and analysis: variational, PDE, wavelet, and stochastic methods. Philadelphia: SIAM.

    MATH  Google Scholar 

  • Chan, T. F., Osher, S., & Shen, J. (2001). The digital TV filter and nonlinear denoising. IEEE Transactions on Image Processing, 10(2), 231–241.

    Article  MATH  Google Scholar 

  • Charbonnier, P., Blanc-Féraud, L., Aubert, G., & Barlaud, M. (1997). Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on Image Processing, 6(2), 298–311.

    Article  Google Scholar 

  • Chatterjee, P., & Milanfar, P. (2008). A generalization of non-local means via kernel regression. In C. A. Bouman, E. L. Miller, & I. Pollak (Eds.), Proc. of SPIE : Vol. 6814. Computational imaging VI (p. 68140P). Bellingham: SPIE.

    Google Scholar 

  • Chen, Y., Ma, J., Feng, Q., Luo, L., Shi, P., & Chen, W. (2008). Nonlocal prior Bayesian tomographic reconstruction. Journal of Mathematical Imaging and Vision, 30(2), 133–146.

    Article  Google Scholar 

  • Cheng, Y. (1995). Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8), 790–799.

    Article  Google Scholar 

  • Chu, C. K., Glad, I. K., Godtliebsen, F., & Marron, J. S. (1998). Edge-preserving smoothers for image processing. Journal of the American Statistical Association, 93(442), 526–541.

    Article  MATH  MathSciNet  Google Scholar 

  • Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.

    Article  Google Scholar 

  • Coupé, P., Hellier, P., Kervrann, C., & Barillot, C. (2008a). Bayesian non local means-based speckle filtering. In Proc. of the 2008 IEEE international symposium on biomedical imaging: from nano to macro (pp. 1291–1294).

  • Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., & Barillot, C. (2008b). An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Transactions on Medical Imaging, 27(4), 425–441.

    Article  Google Scholar 

  • Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8), 2080–2095.

    Article  MathSciNet  Google Scholar 

  • Darbon, J., Cunha, A., Chan, T. F., Osher, S., & Jensen, G. J. (2008). Fast nonlocal filtering applied to electron cryomicroscopy. In Proc. of the 2008 IEEE international symposium on biomedical imaging: from nano to macro (pp. 1331–1334).

  • Didas, S., & Weickert, J. (2006). From adaptive averaging to accelerated nonlinear diffusion filtering. In K. Franke, K.-R. Müller, B. Nicolay, & R. Schäfer (Eds.), Lecture notes in computer science : Vol. 4174. Pattern recognition (pp. 101–110). Berlin: Springer.

    Chapter  Google Scholar 

  • Didas, S., & Weickert, J. (2007). Integrodifferential equations for continuous multiscale wavelet shrinkage. Inverse Problems and Imaging, 1(1), 47–62.

    MATH  MathSciNet  Google Scholar 

  • Didas, S., Mrázek, P., & Weickert, J. (2007). Energy-based image simplification with nonlocal data and smoothness terms. In A. Iske, & J. Levesley (Eds.), Algorithms for approximation (pp. 51–60). Berlin: Springer.

    Chapter  Google Scholar 

  • Elad, M. (2002). On the origin of the bilateral filter and ways to improve it. IEEE Transactions on Image Processing, 11(10), 1141–1151.

    Article  MathSciNet  Google Scholar 

  • Elmoataz, A., Lézoray, O., & Bougleux, S. (2008a). Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing. IEEE Transactions on Image Processing, 17(7), 1047–1060.

    Article  MathSciNet  Google Scholar 

  • Elmoataz, A., Lézoray, O., Bougleux, S., & Ta, V.-T. (2008b). Unifying local and nonlocal processing with partial difference operators on weighted graphs. In A. Foi & A. Gotchev (Eds.), Proc. International workshop on local and non-local approximation in image processing (pp. 11–26).

  • Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.

    Article  MATH  Google Scholar 

  • Gilboa, G., & Osher, S. (2007). Nonlocal linear image regularization and supervised segmentation. SIAM Multiscale Modeling and Simulation, 6(2), 595–630.

    Article  MATH  MathSciNet  Google Scholar 

  • Gilboa, G., & Osher, S. (2008). Nonlocal operators with applications to image processing. SIAM Multiscale Modeling and Simulation, 7(3), 1005–1028.

    Article  MATH  MathSciNet  Google Scholar 

  • Gilboa, G., Darbon, J., Osher, S., & Chan, T. F. (2006). Nonlocal convex functionals for image regularization. Technical Report CAM-06-57, Department of Mathematics, University of California at Los Angeles, CA, USA.

  • Goossens, B., Luong, H., Pizurica, A., & Philips, W. (2008). An improved non-local denoising algorithm. In A. Foi & A. Gotchev (Eds.), Proc. international workshop on local and non-local approximation in image processing (pp. 143–156).

  • Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (1986). Robust statistics. Probability and mathematical statistics. New York: Wiley.

    MATH  Google Scholar 

  • Hein, M., Audibert, J.-Y., & von Luxburg, U. (2007). Graph Laplacians and their convergence on random neighborhood graphs. Journal of Machine Learning Research, 8, 1325–1370.

    Google Scholar 

  • Holland, P. W., & Welsch, R. E. (1977). Robust regression using iteratively reweighted least-squares. Communications in Statistics, 6, 813–827.

    Article  Google Scholar 

  • Huber, P. J. (1981). Robust statistics. New York: Wiley.

    Book  MATH  Google Scholar 

  • Jung, M., & Vese, L. (2009). Image restoration via nonlocal Mumford-Shah regularizers. Technical Report CAM-09-09, Department of Mathematics, University of California at Los Angeles, CA, USA.

  • Kervrann, C., & Boulanger, J. (2006). Optimal spatial adaptation for patch-based image denoising. IEEE Transactions on Image Processing, 15(10), 2866–2878.

    Article  Google Scholar 

  • Kervrann, C., & Boulanger, J. (2008). Local adaptivity to variable smoothness for exemplar-based image regularization and representation. International Journal of Computer Vision, 79(1), 45–69.

    Article  Google Scholar 

  • Kervrann, C., Boulanger, J., & Coupé, P. (2007). Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal. In F. Sgallari, A. Murli, & N. Paragios (Eds.), Lecture notes in computer science : Vol. 4485. Scale space and variational methods in computer vision (pp. 520–532). Berlin: Springer.

    Chapter  Google Scholar 

  • Kindermann, S., Osher, S., & Jones, P. W. (2005). Deblurring and denoising of images by nonlocal functionals. SIAM Multiscale Modeling and Simulation, 4(4), 1091–1115.

    Article  MATH  MathSciNet  Google Scholar 

  • Kleinschmidt, O., Brox, T., & Cremers, D. (2008). Nonlocal texture filtering with efficient tree structures and invariant patch similarity measures. In A. Foi & A. Gotchev (Eds.), Proc. international workshop on local and non-local approximation in image processing (pp. 103–113).

  • Koenderink, J. J., & Van Doorn, A. L. (1999). The structure of locally orderless images. International Journal of Computer Vision, 31(2/3), 159–168.

    Article  Google Scholar 

  • Leclerc, Y. G. (1989). Constructing simple stable descriptions for image partitioning. International Journal of Computer Vision, 3(1), 73–102.

    Article  Google Scholar 

  • Lee, J.-S. (1983). Digital image smoothing and the sigma filter. Computer Vision, Graphics, and Image Processing, 24, 255–269.

    Article  Google Scholar 

  • Liu, J., Huan, Z., Huang, H., & Zhang, H. (2009). An adaptive method for recovering image from mixed noisy data. International Journal of Computer Vision, 85(2), 182–191.

    Article  Google Scholar 

  • Liu, Y.-L., Wang, J., Chen, X., & Guo, Y.-W. (2008). A robust and fast non-local means algorithm for image denoising. Journal of Computer Science and Technology, 23(2), 270–279.

    Article  MathSciNet  Google Scholar 

  • Lou, Y., Favaro, P., Soatto, S., & Bertozzi, A. (2009). Nonlocal similarity image filtering. In P. Foggia, C. Sansone, & M. Vento (Eds.), Lecture notes in computer science : Vol. 5716. Image analysis and processing—ICIAP 2009 (pp. 62–71). Berlin: Springer.

    Chapter  Google Scholar 

  • Loupas, T., McDicken, W. N., & Allan, P. L. (1989). An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Transactions on Circuits and Systems, 36(1), 129–135.

    Article  Google Scholar 

  • Mahmoudi, M., & Sapiro, G. (2005). Fast image and video denoising via nonlocal means of similar neighborhoods. IEEE Signal Processing Letters, 12(12), 839–842.

    Article  Google Scholar 

  • Mrázek, P., & Navara, M. (2003). Selection of optimal stopping time for nonlinear diffusion filtering. International Journal of Computer Vision, 52(2/3), 189–203.

    Article  Google Scholar 

  • Mrázek, P., Weickert, J., & Bruhn, A. (2006). On robust estimation and smoothing with spatial and tonal kernels. In R. Klette, R. Kozera, L. Noakes, & J. Weickert (Eds.), Computational imaging and vision : Vol. 31. Geometric properties for incomplete data (pp. 335–352). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Mumford, D. (1994). The Bayesian rationale for energy functionals. In B. M. ter Haar Romeny (Ed.), Computational imaging and vision : Vol. 1. Geometry-driven diffusion in computer vision (pp. 141–153). Dordrecht: Kluwer.

    Google Scholar 

  • Nikolova, M. (2005). Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. SIAM Multiscale Modeling and Simulation, 4(3), 960–991.

    Article  MATH  MathSciNet  Google Scholar 

  • Nordström, N. (1990). Biased anisotropic diffusion—a unified regularization and diffusion approach to edge detection. Image and Vision Computing, 8, 318–327.

    Article  Google Scholar 

  • Orchard, J., Ebrahimi, M., & Wong, A. (2008). Efficient non-local-means denoising using the SVD. In Proc. of the 15th IEEE international conference on image processing (pp. 1732–1735). Los Alamitos: IEEE Comput. Soc.

    Chapter  Google Scholar 

  • Perona, P., & Malik, J. (1990). Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629–639.

    Article  Google Scholar 

  • Peter, J. D., Govindan, V. K., & Mathew, A. T. (2008). Robust estimation approach for NL-means filter. In G. Bebis, R. Boyle, B. Parvin, D. Koracin, P. Remagnino, F. Porikli, J. Peters, J. Klosowski, L. Arns, K. C. Yu, T.-M. Rhyne, & L. Monroe (Eds.), Lecture notes in computer science : Vol. 5359. Advances in visual computing (pp. 571–580). Berlin: Springer.

    Chapter  Google Scholar 

  • Peyré, G., Bougleux, S., & Cohen, L. (2008). Non-local regularization of inverse problems. In D. Forsyth, P. Torr, & A. Zisserman (Eds.), Lecture notes in computer science : Vol. 5304. Computer vision—ECCV 2008, part III (pp. 57–68). Berlin: Springer.

    Chapter  Google Scholar 

  • Pizarro, L., Didas, S., Bauer, F., & Weickert, J. (2007). Evaluating a general class of filters for image denoising. In B. K. Ersbøll & K. S. Pedersen (Eds.), Lecture notes in computer science : Vol. 4522. Image analysis (pp. 601–610). Berlin: Springer.

    Chapter  Google Scholar 

  • Portilla, J., Strela, V., Wainwright, M. J., & Simoncelli, E. P. (2003). Image denoising using Gaussian scale mixtures in the wavelet domain. IEEE Transactions on Image Processing, 12(11), 1338–1351.

    Article  MathSciNet  Google Scholar 

  • Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60, 259–268.

    Article  MATH  Google Scholar 

  • Saint-Marc, P., Chen, J.-S., & Medioni, G. (1991). Adaptive smoothing: A general tool for early vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6), 514–529.

    Article  Google Scholar 

  • Scherzer, O., & Weickert, J. (2000). Relations between regularization and diffusion filtering. Journal of Mathematical Imaging and Vision, 12, 43–63.

    Article  MATH  MathSciNet  Google Scholar 

  • Schnörr, C. (1994). Unique reconstruction of piecewise smooth images by minimizing strictly convex non-quadratic functionals. Journal of Mathematical Imaging and Vision, 4, 189–198.

    Article  MathSciNet  Google Scholar 

  • Smith, S. M., & Brady, J. M. (1997). SUSAN—A new approach to low level image processing. International Journal of Computer Vision, 23(1), 43–78.

    Article  Google Scholar 

  • Steidl, G., Weickert, J., Brox, T., Mrázek, P., & Welk, M. (2004). On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM Journal on Numerical Analysis, 42(2), 686–713.

    Article  MATH  MathSciNet  Google Scholar 

  • Stevenson, R. L., Schmitz, B. E., & Delp, E. J. (1994). Discontinuity preserving regularization of inverse visual problems. IEEE Transactions on Systems, Man and Cybernetics, 24, 455–469.

    Article  Google Scholar 

  • Ta, V.-T., Lézoray, O., Elmoataz, A., & Schüpp, S. (2009). Graph-based tools for microscopic cellular image segmentation. Pattern Recognition, 42(6), 1113–1125.

    Article  Google Scholar 

  • Tikhonov, A. N., & Arsenin, V. Y. (1977). Solutions of ill-posed problems. W.H. Washington: Winston.

    MATH  Google Scholar 

  • Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and colour images. In Proc. of the 1998 IEEE international conference on computer vision (pp. 839–846). Bombay, India, January 1998. New Delhi: Narosa Publishing House.

    Google Scholar 

  • van de Weijer, J., & van den Boomgaard, R. (2001). Local mode filtering. In Proc. 2001 IEEE computer society conference on computer vision and pattern recognition (Vol. 2, pp. 428–433). Kauai, HI, December 2001. Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • van den Boomgaard, R., & van de Weijer, J. (2002). On the equivalence of local-mode finding, robust estimation and mean-shift analysis as used in early vision tasks. In Proc. 16th international conference on pattern recognition (Vol. 3, pp. 927–930). Quebec City, Canada, August 2002.

  • van Ginneken, B., & ter Haar Romeny, B. M. (2000). Applications of locally orderless images. Journal of Visual Communication and Image Representation, 11, 196–208.

    Article  Google Scholar 

  • Vrscay, E. R. (2008). A simple model for affine self-similarity of images and its applications. In A. Foi & A. Gotchev (Eds.), Proc. international workshop on local and non-local approximation in image processing (pp. 61–76).

  • Weickert, J. (1994). Anisotropic diffusion filters for image processing based quality control. In A. Fasano, & M. Primicerio (Eds.), Proc. seventh European conf. on mathematics in industry (pp. 355–362). Stuttgart: Teubner.

    Google Scholar 

  • Weickert, J. (1997). A review of nonlinear diffusion filtering. In B. ter Haar Romeny, L. Florack, J. Koenderink, & M. Viergever (Eds.), Lecture notes in computer science : Vol. 1252. Scale-space theory in computer vision (pp. 3–28). Berlin: Springer.

    Google Scholar 

  • Weickert, J. (1998). Anisotropic diffusion in image processing. Stuttgart: Teubner.

    MATH  Google Scholar 

  • Weickert, J., & Schnörr, C. (2001). A theoretical framework for convex regularizers in PDE-based computation of image motion. International Journal of Computer Vision, 45(3), 245–264.

    Article  MATH  Google Scholar 

  • Winkler, G. (2003). Image analysis, random fields and Markov chain Monte Carlo methods (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Winkler, G., Aurich, V., Hahn, K., & Martin, A. (1999). Noise reduction in images: Some recent edge-preserving methods. Pattern Recognition and Image Analysis, 9(4), 749–766.

    Google Scholar 

  • Yaroslavsky, L. P. (1985). Digital picture processing. New York: Springer.

    MATH  Google Scholar 

  • Zeidler, E. (1986). Nonlinear functional analysis and applications I: fixed-point theorems. New York: Springer.

    MATH  Google Scholar 

  • Zhou, D., & Burges, C. (2008). High-order regularization on graphs. In International workshop on mining and learning with graphs.

  • Zhou, D., & Schölkopf, B. (2004). A regularization framework for learning from graph data. In Proc. ICML workshop on statistical relational learning and its connections to other fields (pp. 132–137).

  • Zhou, D., & Schölkopf, B. (2005). Regularization on discrete spaces. In W. G. Kropatsch, R. Sablatnig, & A. Hanbury (Eds.), Lecture notes in computer science : Vol. 3663. Pattern recognition (pp. 361–368). Berlin: Springer.

    Chapter  Google Scholar 

  • Zimmer, S., Didas, S., & Weickert, J. (2008). A rotationally invariant block matching strategy improving image denoising with non-local means. In A. Foi & A. Gotchev (Eds.), Proc. international workshop on local and non-local approximation in image processing (pp. 135–142).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Pizarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pizarro, L., Mrázek, P., Didas, S. et al. Generalised Nonlocal Image Smoothing. Int J Comput Vis 90, 62–87 (2010). https://doi.org/10.1007/s11263-010-0337-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0337-7

Keywords

Navigation