Skip to main content

Advertisement

Log in

Using rabies virus vaccine strain SRV9 as viral vector to express exogenous gene

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Rabies virus (RABV) can cause a fatal neurological disease in human and animals, and vaccines were generally applied for the immunoprophylaxis of rabies. Here, a recombinant viral vector carrying the exogenous gene expression component between phosphoprotein (P) and matrix protein (M) genes of RABV was constructed based on the vaccine strain SRV9 used in China. To develop a reverse genetic system, the full-length cDNA plasmids of SRV9 were constructed using the eukaryotic expression vector pCI or pcDNA3.1(+). However, recovery efficiency based on the pcDNA3.1 vector was significantly higher than that of the pCI vector. The exogenous gene expression component PE-PS-BsiWI-PmeI or PS-BsiWI-PmeI-PE was introduced in different locations between the P and M genes of SRV9. When the enhanced green fluorescent protein (eGFP) was used as a reporter gene, both locations could rescue recombinant RABV (rRABV) expressing eGFP with high efficiency. Characterization of rRABV expressing eGFP in vitro revealed that its growth was similar to that of the parental virus. Animal experiments showed that rRABV expressing eGFP could replicate and express eGFP in the brains of suckling mice. Furthermore, rRABV of SRV9 was nonpathogenic for 3-week-old mice and could be cleared from the central nervous system at 5 days post-inoculation. Our results showed that the recombinant SRV9 virus could be used as a useful viral vector for exogenous gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. L. Martinez, Int. J. Infect. Dis. 4, 222–228 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. M.J. Schnell, T. Mebatsion, K.K. Conzelmann, EMBO J. 13, 4195–4203 (1994)

    PubMed Central  CAS  PubMed  Google Scholar 

  3. N. Ito, M. Takayama, K. Yamada, M. Sugiyama, N. Minamoto, J. Virol. 75, 9121–9128 (2001)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. N. Ito, M. Takayama-Ito, K. Yamada, J. Hosokawa, M. Sugiyama, N. Minamoto, Microbiol. Immunol. 47, 613–617 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. K. Inoue, Y. Shoji, I. Kurane, T. Iijima, T. Sakai, K. Morimoto, J. Virol. Methods 107, 229–236 (2003)

    Article  CAS  PubMed  Google Scholar 

  6. X. Wu, C.E. Rupprecht, Virus Res. 131, 95–99 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. Y. Huang, Q. Tang, S.A. Nadin-Davis, S. Zhang, C.D. Hooper, P. Ming, J. Du, X. Tao, R. Hu, G. Liang, Virus Res. 149, 28–35 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. E.A. Gomme, C.N. Wanjalla, C. Wirblich, M.J. Schnell, Adv. Virus Res. 79, 139–164 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. H. Yuan, R. Hu, S. Zhang, M. Zhang, C. Tu, Virol. Sin. 18, 63–67 (2003)

    CAS  Google Scholar 

  10. X. Wang, Y. Jin, C. Sun, S. Zhang, Z. Yuan, Z. Ding, R. Hu, J Anim. Vet. Adv. 10, 322–326 (2011)

    Article  Google Scholar 

  11. P. Le Mercier, Y. Jacob, K. Tanner, N. Tordo, J. Virol. 76, 2024–2027 (2002)

    Article  PubMed Central  PubMed  Google Scholar 

  12. Y. Wen, H. Wang, H. Wu, F. Yang, R.A. Tripp, R.J. Hogan, Z.F. Fu, J. Virol. 85, 1634–1644 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. L. Zhao, H. Toriumi, H. Wang, Y. Kuang, X. Guo, K. Morimoto, Z.F. Fu, J. Virol. 84, 9642–9648 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. H. Wang, G. Zhang, Y. Wen, S. Yang, X. Xia, Z.F. Fu, PLoS One 6, e25414 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. G.W. Wertz, V.P. Perepelitsa, L.A. Ball, Proc. Natl. Acad. Sci. USA 95, 3501–3506 (1998)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. M. Faber, M. Bette, M.A. Preuss, R. Pulmanausahakul, J. Rehnelt, M.J. Schnell, B. Dietzschold, E. Weihe, J. Virol. 79, 15405–15416 (2005)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. L. Zhao, H. Toriumi, Y. Kuang, H. Chen, Z.F. Fu, J. Virol. 83, 11808–11818 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. M. Martin, H.K. Kaplan, in Laboratory techniques in rabies, ed. by M. Martin (World Health Organization, 1973), pp. 73–80

Download references

Acknowledgments

This work was supported partially by National Natural Science Foundation of China (No. 31101791), China Postdoctoral Science Foundation Grant (No. 2012M512108), and the Special Fund for Agro-scientific Research in the Public Interest (No. 201103032).

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ningyi Jin, Songtao Yang or Xianzhu Xia.

Additional information

Edited by Zhen F. Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Jin, H., Feng, N. et al. Using rabies virus vaccine strain SRV9 as viral vector to express exogenous gene. Virus Genes 50, 299–302 (2015). https://doi.org/10.1007/s11262-014-1160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-014-1160-y

Keywords

Navigation