Skip to main content
Log in

An assemblage of closteroviruses infects Hawaiian ti (Cordyline fruticosa L.)

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The ti plant (Cordyline fruticosa L.) is culturally important throughout most of Polynesia and has considerable economic importance in Hawai’i where the foliage is commonly used in cultural ceremonies as well as food and ornamental industries. In Hawai’i, ringspot symptoms were recently observed on leaves of the common green variety of ti growing in Kahalu’u on the island of O’ahu, and Wailuku and Hana on the island of Maui. High molecular weight double-stranded (ds)RNAs were isolated from the leaves of symptomatic plants as well as plants without symptoms. A cDNA library derived from the dsRNAs present in symptomatic plants was generated and sequenced. These sequences indicated at least four distinct clostero-like viruses were present in the plants, and phylogenetic analyses suggested they were most closely related to Little cherry virus 1, an unassigned member of the family Closteroviridae. The 16,883 nucleotide genome of one of these viruses was determined and predicted to contain ten open reading frames with an organization typical of closteroviruses. Reverse-transcription PCR revealed this virus was present in both symptomatic and asymptomatic ti plants, making it unlikely to be responsible for the observed ringspot symptoms. We propose the name Cordyline virus 1 (CoV-1) for this virus and include it as a new, unassigned member of the family Closteroviridae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

cDNA:

Complementary DNA

dNTP:

Deoxyribonucleotide triphosphate

DTT:

Dithiothreitol

KCl:

Potassium chloride

MgCl2 :

Magnesium chloride

PCR:

Polymerase chain reaction

RLM-RACE:

RNA ligase-mediated rapid amplification of cDNA ends

References

  1. A.V. Karasev, Annu. Rev. Phytopathol. 38, 293–324 (2000)

    Article  PubMed  CAS  Google Scholar 

  2. G.P. Martelli, A.A. Agranovsky, M. Bar-Joseph, D. Boscia, T. Candresse, R.H.A. Couts, V.V. Dolja, B.W. Falk, D. Gonsalves, W. Jelkmann, A.V. Karasev, A. Minafra, S. Namba, H.J. Vetten, G.C. Wisler, N. Yoshikawa, Arch. Virol. 147, 2039–2044 (2002)

    Article  PubMed  CAS  Google Scholar 

  3. W. Jelkmann, B. Fechtner, A.A. Agranovsky, J. Gen. Virol. 78, 2067–2071 (1997)

    PubMed  CAS  Google Scholar 

  4. D.M. Sether, M.J. Melzer, J. Busto, F. Zee, J.S. Hu, Plant Dis. 89, 450–456 (2005)

    Article  CAS  Google Scholar 

  5. S.W. Prosser, D.E. Goszcynski, B. Meng, Virus Res. 124, 151–159 (2007)

    Article  PubMed  CAS  Google Scholar 

  6. A.E. Hinkle, Am. J. Bot. 94, 828–839 (2007)

    Article  Google Scholar 

  7. E.S.C. Handy, E.G. Handy, Native Planters in Old Hawaii (Bishop Museum Press, Honolulu, 1972), pp. 222–225

    Google Scholar 

  8. M.E. Hudson, K.J. Whetstone, in Statistics of Hawaii Agriculture 2008 (USDA, NASS, Hawaii Field Office, 2010), http://www.nass.usda.gov/Statistics_by_State/Hawaii/Publications/Annual_Statistical_Bulletin/stat-26.pdf. Accessed 23 June 2010

  9. T.J. Morris, J.A. Dodds, Phytopathology 69, 854–858 (1979)

    Article  CAS  Google Scholar 

  10. J.S. Hu, A. Gonsalves, D. Sether, D.E. Ullman, Acta Hortic. 334, 411–416 (1993)

    Google Scholar 

  11. M.J. Melzer, W.B. Borth, D.M. Sether, S. Ferreira, D. Gonsalves, J.S. Hu, Virus Genes 40, 111–118 (2010)

    Article  PubMed  CAS  Google Scholar 

  12. X. Huang, A. Madan, Genome Res. 9, 868 (1999)

    Article  PubMed  CAS  Google Scholar 

  13. R.H.A. Coutts, I.C. Livieratos, J. Phytopathol. 151, 525–527 (2003)

    Article  CAS  Google Scholar 

  14. J.D. Thompson, T.J. Gibson, F. Plewniak, F. Jeanmougin, D.G. Higgins, Nucleic Acids Res. 24, 4876 (1997)

    Article  Google Scholar 

  15. J. Felsenstein, Cladistics 5, 164–166 (1989)

    Google Scholar 

  16. J.P. Huelsenbeck, F. Ronquist, Bioinformatics 17, 754 (2001)

    Article  PubMed  CAS  Google Scholar 

  17. F. Ronquist, J.P. Huelsenbeck, Bioinformatics 19, 1572 (2003)

    Article  PubMed  CAS  Google Scholar 

  18. R.D.M. Page, Comput. Appl. Biosci. 12, 357–358 (1996)

    PubMed  CAS  Google Scholar 

  19. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, J. Mol. Biol. 215, 403–410 (1990)

    PubMed  CAS  Google Scholar 

  20. S.F. Altschul, M.S. Boguski, W. Gish, J.C. Wootton, Nat. Genet. 6, 119–129 (1994)

    Article  PubMed  CAS  Google Scholar 

  21. M.N. Rozanov, E.V. Koonin, A.E. Gorbalenya, J. Gen. Virol. 73, 2129–2134 (1992)

    Article  PubMed  CAS  Google Scholar 

  22. A.E. Gorbalenya, E.V. Koonin, Curr. Opin. Struct. Biol. 3, 419–429 (1993)

    Article  CAS  Google Scholar 

  23. M.S. Bratlie, F. Drabløs, BMC Genomics 6 (2005). doi:10.1186/1471-2164-6-1

  24. E.V. Koonin, J. Gen.Virol. 72, 2197–2206 (1991)

    Article  PubMed  Google Scholar 

  25. J. Ting, A.S. Lee, DNA 7, 275–286 (1988)

    Article  PubMed  CAS  Google Scholar 

  26. I.C. Livieratos, E. Eliasco, G. Müller, R.C.L. Olsthoorn, L.F. Salazar, C.W.A. Pleij, R.H.A. Coutts, J. Gen. Virol. 85, 2065–2075 (2004)

    Article  PubMed  CAS  Google Scholar 

  27. N.M. Salem, A.Y.S. Chen, I.E. Tzanetakis, C. Mongkolsiriwattana, J.C.K. Ng, Virology 390, 45–55 (2009)

    Article  PubMed  CAS  Google Scholar 

  28. G. Martin, L. Velasco, E. Segundo, I.M. Cuadrado, D. Janssen, Arch. Virol. 153, 999–1001 (2008)

    Article  PubMed  CAS  Google Scholar 

  29. V.V. Dolja, V.P. Boyko, A.A. Agranovsky, E.V. Koonin, Virology 184, 79–86 (1991)

    Article  PubMed  CAS  Google Scholar 

  30. M.E. Rott, W. Jelkmann, Arch. Virol. 150, 107–123 (2005)

    Article  PubMed  CAS  Google Scholar 

  31. K. Kobayashi, J. Griffis, A. Kawabata, G. Sako, Hawaiian Ti (University of Hawai’i, 2007), http://www.ctahr.hawaii.edu/oc/freepubs/pdf/OF-33.pdf. Accessed 23 June 2010

  32. G. Nyland, A.C. Goheen, Annu. Rev. Phytopathol. 7, 331–354 (1969)

    Article  Google Scholar 

  33. Q.C. Wang, B. Panis, F. Engelmann, M. Lambardi, J.P.T. Valkonen, Ann. Appl. Biol. 154, 351–363 (2009)

    Article  Google Scholar 

  34. Q. Wang, W.J. Cuellar, M.L. Rajamäki, Y. Hirata, J.P.T. Valkonen, Mol. Plant Pathol. 9, 237–250 (2008)

    Article  PubMed  CAS  Google Scholar 

  35. D.M. Sether, C. Okumura, M.M. Kislan, J.L. Busto, C. Arakawa, F. Zee, A.V. Karasev, J.S. Hu, Plant Dis. 85, 856–864 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11262_2010_537_MOESM1_ESM.tif

Fig. S1 Phylogenetic placement of CoV-1 within the family Closteroviridae. The phylogram is based on the HEL, RdRp, HSP70h, and CP sequences linked together using a Bayesian analysis. Similar results were obtained using neighbor-joining and parsimony analyses. Viral abbreviations are given in Table 1. The scale represents the distance for the indicated number of substitutions. Branch numbers are posterior probabilities and an indication of branch support. Branches with a posterior probability value of less than 70 were collapsed. (TIFF 160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melzer, M.J., Sether, D.M., Borth, W.B. et al. An assemblage of closteroviruses infects Hawaiian ti (Cordyline fruticosa L.). Virus Genes 42, 254–260 (2011). https://doi.org/10.1007/s11262-010-0537-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-010-0537-9

Keywords

Navigation