Skip to main content
Log in

Enhanced discrimination of African swine fever virus isolates through nucleotide sequencing of the p54, p72, and pB602L (CVR) genes

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Complete sequencing of p54-gene from 67 European, American, and West and East African Swine Fever virus (ASFV) isolates revealed that West African and European ASFV isolates classified within the predominant Genotype I according to partial sequencing of p72 were discriminated into four major sub-types on the basis of their p54 sequences. This highlighted the value of p54 gene sequencing as an additional, intermediate-resolution, molecular epidemiological tool for typing of ASFV viruses. We further evaluated p54-based genotyping, in combination with partial sequences of two other genes, for determining the genetic relationships and origin of viruses responsible for disease outbreaks in Kenya. Animals from Western and central Kenya were confirmed as being infected with ASFV using a p72 gene-based PCR assay, following outbreaks of severe hemorrhagic disease in domestic pigs in 2006 and 2007. Eleven hemadsorbing viruses were isolated in macrophage culture and genotyped using a combination of full-length p54-gene sequencing, partial p72-gene sequencing, and analysis of tetrameric amino acid repeat regions within the variable region of the B602L gene (CVR). The data revealed that these isolates were identical in their p72 and p54 sequence to viruses responsible for ASF outbreaks in Uganda in 2003. There was a minor difference in the number of tetrameric repeats within the B602L sequence of the Kenyan isolates that caused the second Kenyan outbreak in 2007. A practical implication of the genetic similarity of the Kenyan and Ugandan viral isolates is that ASF control requires a regional approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L.K. Dixon, J.M. Escribano, C. Martins, D.L. Rock, M.L. Salas, P.J. Wilkinson, in Virus taxonomy, VIIIth Report of the ICTV, ed. by C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, L.A. Ball (Elsevier/Academic Press, London, 2005), pp. 135–143

    Google Scholar 

  2. E.V. Genovesi, R.C. Knudsen, T.C. Whyard, C.A. Mebus, Am. J. Vet. Res. 49, 338–344 (1988)

    CAS  PubMed  Google Scholar 

  3. J.M. Haresnape, P.J. Wilkinson, Epidemiol. Infect. 102, 507–522 (1989)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. W.P.J. Plowright, M.A. Pierce, Nature 221, 1071–1073 (1969). doi:https://doi.org/10.1038/2211071a0

    Article  CAS  PubMed  Google Scholar 

  5. C. Sanchez Botija, Bull. Off. Int. Epizoot. 60, 895–899 (1963)

    Google Scholar 

  6. A. González, A. Talavera, J.M. Almendral, E. Viñuela, Nucleic Acids Res. 14(17), 6835–6844 (1986)

    Article  PubMed Central  PubMed  Google Scholar 

  7. J.M. Sogo, J.M. Almendral, A. Talavera, E. Viñuela, Virology 133(2), 271–275 (1984)

    Article  CAS  PubMed  Google Scholar 

  8. R.D. Wesley, A.E. Tuthill, Prev.Vet. Med. 2, 53–62 (1984). doi:https://doi.org/10.1016/0167-5877(84)90048-5

    Article  Google Scholar 

  9. R. Yáñez, J. Rodríguez, M. Nogal, L. Yuste, C. Enríquez, J. Rodríguez, E. Viñuela, Virology 208, 249–278 (1995). doi:https://doi.org/10.1006/viro.1995.1149

    Article  PubMed  Google Scholar 

  10. M. Aguero, R. Blasco, P. Wilkinson, E. Vinuela, Virology 176, 195–204 (1990). doi:https://doi.org/10.1016/0042-6822(90)90244-L

    Article  CAS  PubMed  Google Scholar 

  11. F. Almazan, J.R. Murguia, J.M. Rodriguez, I. Delavega, E. Vinuela, J. Gen. Virol. 76, 729–740 (1995). doi:https://doi.org/10.1099/0022-1317-76-4-729

    Article  CAS  PubMed  Google Scholar 

  12. R. Blasco, I. Delavega, F. Almazan, M. Aguero, E. Vinuela, Virology 173, 251–257 (1989). doi:https://doi.org/10.1016/0042-6822(89)90241-9

    Article  CAS  PubMed  Google Scholar 

  13. L.K. Dixon, C. Bristow, P.J. Wilkinson, K.J. Sumption, J. Mol. Biol. 216, 677–688 (1990). doi:https://doi.org/10.1016/0022-2836(90)90391-X

    Article  CAS  PubMed  Google Scholar 

  14. P.M. Irusta, M.V. Borca, G.F. Kutish, Z. Lu, E. Caler, C. Carrillo, D.L. Rock, Virology 220, 20–27 (1996). doi:https://doi.org/10.1006/viro.1996.0281

    Article  CAS  PubMed  Google Scholar 

  15. F. Rodriguez, C. Alcaraz, A. Eiras, R.J. Yanez, J.M. Rodriguez, C. Alonso, J.F. Rodriguez, J.M. Escribano, J. Virol. 68, 7244–7252 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. K.J. Sumption, G.H. Hutchings, P.J. Wilkinson, L.K. Dixon, J. Gen. Virol. 71, 2331–2340 (1990). doi:https://doi.org/10.1099/0022-1317-71-10-2331

    Article  CAS  PubMed  Google Scholar 

  17. C.I. Boshoff, A.D. Bastos, L.J. Gerber, W. Vosloo, Vet. Microbiol. 121(1–2), 45–55 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. B.A. Lubisi, A.D.S. Bastos, R.M. Dwarka, W. Vosloo, Arch. Virol. 150, 2439–2452 (2005). doi:https://doi.org/10.1007/s00705-005-0602-1

    Article  CAS  PubMed  Google Scholar 

  19. A.D. Bastos, M.L. Penrith, F. Macome, F. Pinto, G.R. Thomson, Vet. Microbiol. 103(3–4), 169–182 (2004)

    Article  CAS  PubMed  Google Scholar 

  20. B.A. Lubisi, A.D. Bastos, R.M. Dwarka, W. Vosloo, Virus Genes 35(3), 729–735 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. S.B. Phologane, A.D. Bastos, M.L. Penrith, Virus Genes 31(3), 357–360 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. H. Sun, S.C. Jacobs, G.L. Smith, L.K. Dixon, R.M. Parkhouse, J. Gen. Virol. 76(Pt 5), 1117–1127 (1995)

    Article  CAS  PubMed  Google Scholar 

  23. A.D.S. Bastos, M.L. Penrith, C. Cruciere, J.L. Edrich, G. Hutchings, F. Roger, E. Couacy-Hymann, G.R. Thomson, Arch. Virol. 148, 693–706 (2003). doi:https://doi.org/10.1007/s00705-002-0946-8

    Article  CAS  PubMed  Google Scholar 

  24. M. Agüero, J. Fernández, L. Romero, C. Sánchez Mascaraque, M. Arias, J.M. Sánchez-Vizcaíno, J. Clin. Microbiol. 41(9), 4431–4434 (2003)

    Article  PubMed Central  PubMed  Google Scholar 

  25. W. Malmquist, D. Hay, Am. J. Vet. Res. 21, 104–108 (1960)

    CAS  PubMed  Google Scholar 

  26. R.J. Nix, C. Gallardo, G. Hutchings, E. Blanco, L.K. Dixon, Arch. Virol. 151(12), 2475–2494 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. S. Kumar, K. Tamura, I.B. Jakobsen, M. Nei, Bioinformatics 17(12), 1244–1245 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. E.C. Anderson, G.H. Hutchings, G. Mukarati, P.J. Wilkinson, Vet. Microbiol. 62, 1–15 (1998). doi:https://doi.org/10.1016/S0378-1135(98)00187-4

    Article  CAS  PubMed  Google Scholar 

  29. C.A.L. Oura, P.P. Powell, E. Anderson, R.M.E. Parkhouse, J. Gen. Virol. 79, 1439–1443 (1998)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present work was partly supported under the grant ILRI2003-001 funded by the Spanish Ministerio de Innovacion y Ciencia and by the European Union through the network of excellence “EPIZONE.” We greatly appreciate the intellectual and practical contributions of our colleagues at Centro de Investigación en Sanidad Animal (CISA-INIA) and International Livestock Research Institute (ILRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmina Gallardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallardo, C., Mwaengo, D.M., Macharia, J.M. et al. Enhanced discrimination of African swine fever virus isolates through nucleotide sequencing of the p54, p72, and pB602L (CVR) genes. Virus Genes 38, 85–95 (2009). https://doi.org/10.1007/s11262-008-0293-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-008-0293-2

Keywords

Navigation