Skip to main content

Advertisement

Log in

Optimized Transduction of Canine Paediatric CD34+ Cells Using an MSCV-based Bicistronic Vector

  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

We have used a murine MSCV-based bicistronic retroviral vector, containing the common gamma chain (γc) and enhanced green fluorescent protein (EGFP) cDNAs, to optimize retroviral transduction of canine cells, including an adherent canine thymus fibroblast cell line, Cf2Th, as well as normal canine CD34+ bone marrow (BM) cells. Both canine cell types were shown to express Ram-1 (the amphotropic retroviral receptor) mRNA. Supernatants containing infectious viruses were produced using both stable (PA317) and transient (Phoenix cells) amphotropic virus producer cell lines. Centrifugation (spinfection) combined with the addition of polybrene produced the highest transduction efficiencies, infecting ∼75% of Cf2Th cells. An average of 11% of highly enriched canine CD34+ cells could be transduced in a protocol that utilized spinfection and plates coated with the fibronectin fragment CH-296 (Retronectin). Indirect assays showed the vector-encoded canine γc cDNA produced a γc protein that was expressed on the cell surface of transduced cells. This strategy may result in the transduction of sufficient numbers of CD34+ BM cells to make the treatment of canine X-linked severe combined immunodeficiency and other canine genetic diseases feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BM:

bone marrow

BMT:

bone marrow transplantation

EGFP:

enhanced green fluorescent protein

γc:

gamma c

HPC:

haematopoietic progenitor cell

MoMLV:

Moloney murine leukaemia virus

MSCV:

murine stem cell virus

SRC:

SCID repopulating cells

SP:

side population

XSCID:

X-linked severe combined immunodeficiency

References

  • Andrews, R.G., Bryant, E.M., Bartelmez, S.H., Muirhead, D.Y., Knitter, G.H., Bensinger, W., Strong, D.M. and Bernstein, I.D., 1992. CD34+ marrow cells, devoid of T and B lymphocytes, reconstitute stable lymphopoiesis and myelopoiesis in lethally irradiated allogeneic baboons. Blood, 80, 1693–1701

    PubMed  CAS  Google Scholar 

  • Baum, C.M., Weissman, I.L., Tsukamoto, A.S., Buckle, A.M. and Peault, B., 1992. Isolation of a candidate human hematopoietic stem-cell population. Proceedings of the National Academy of Sciences of the USA, 89, 2804–2808

    Article  PubMed  CAS  Google Scholar 

  • Beck-Engeser, G., Stocking, C., Just, U., Albritton, L., Dexter, M., Spooncer, E. and Ostertag, W., 1991. Retroviral vectors related to the myeloproliferative sarcoma virus allow efficient expression in hematopoietic stem and precursor cell lines, but retroviral infection is reduced in more primitive cells. Human Gene Therapy, 2, 71–70

    Article  Google Scholar 

  • Bhatia, M., Bonnet, D., Murdoch, B., Gan, O.I. and Dick, J.E., 1998. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nature Medicine, 4, 1038–1045

    Article  PubMed  CAS  Google Scholar 

  • Bienzle, D., Abrams-Ogg, A.C., Kruth, S.A., Ackland-Snow, J., Carter, R.F., Dick, J.E., Jacobs, R.M., Kamel-Reid, S. and Dube, I.D., 1994. Gene transfer into hematopoietic stem cells: long-term maintenance of in vitro activated progenitors without marrow ablation. Proceedings of the National Academy of Sciences of the USA, 91, 350–354

    Article  PubMed  CAS  Google Scholar 

  • Bierhuizen, M.F., Westerman, Y., Visser, T.P., Dimjati, W., Wognum, A.W. and Wagemaker, G., 1997. Enhanced green fluorescent protein as selectable marker of retroviral-mediated gene transfer in immature hematopoietic bone marrow cells. Blood, 90, 3304–3315

    PubMed  CAS  Google Scholar 

  • Bousso, P., Wahn, V., Douagi, I., Horneff, G., Pannetier, C., Le Deist, F., Zepp, F., Niehues, T., Kourilsky, P., Fischer, A. and De Saint Basile, G., 2000. Diversity, functionality, and stability of the T cell repertoire derived in vivo from a single human T cell precursor. Proceedings of the National Academy of Sciences of the USA, 97, 274–278

    Article  PubMed  CAS  Google Scholar 

  • Bruno, B., Goerner, M.A., Nash, R.A., Storb, R., Kiem, H.P. and McSweeney, P.A., 2001. Purified canine CD34+Lin- marrow cells transduced with retroviral vectors give rise to long-term multi-lineage hematopoiesis. Biology of Blood and Marrow Transplantation, 7, 543–551

    Article  PubMed  CAS  Google Scholar 

  • Carter, R.F., Abrams-Ogg, A.C., Dick, J.E., Kruth, S.A., Valli, V.E., Kamel-Reid, S. and Dube, I.D., 1992. Autologous transplantation of canine long-term marrow culture cells genetically marked by retroviral vectors. Blood, 79, 356–364

    PubMed  CAS  Google Scholar 

  • Cavazzana-Calvo, M., Hacein-Bey, S., De Saint Basile, G., Gross, F., Yvon, E., Nusbaum, P., Selz, F., Hue, C., Certain, S., Casanova, J.L., Bousso, P., Deist, F.L. and Fischer, R.A., 2000. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science, 288, 669–672

    Article  PubMed  CAS  Google Scholar 

  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. and Prasher, D.C., 1994. Green fluorescent protein as a marker for gene expression. Science, 263, 802–805

    Article  PubMed  CAS  Google Scholar 

  • Challita, P.M. and Kohn, D.B., 1994. Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo. Proceedings of the National Academy of Sciences of the USA, 91, 2567–2571

    Article  PubMed  CAS  Google Scholar 

  • Cheng, L., Du, C., Lavau, C., Chen, S., Tong, J., Chen, B.P., Scollay, R., Hawley, R.G. and Hill, B., 1998. Sustained gene expression in retrovirally transduced, engrafting human hematopoietic stem cells and their lympho-myeloid progeny. Blood, 92, 83–92

    PubMed  CAS  Google Scholar 

  • Chien, M.L., Foster, J.L., Douglas, J.L. and Garcia, J.V., 1997. The amphotropic murine leukemia virus receptor gene encodes a 71-kilodalton protein that is induced by phosphate depletion. Journal of Virology, 71, 4564–4570

    PubMed  CAS  Google Scholar 

  • Civin, C.I., Almedia-Porada, G., Le, M.J., Olweus, J., Terstappen, L.W. and Zanjani, E.D., 1996. Sustained, retransplantable, multilineage engraftment of highly purified adult human bone marrow stem cells in vivo. Blood, 88, 4102–4109

    PubMed  CAS  Google Scholar 

  • Cormack, B.P., Valdivia, R.H. and Falkow, S., 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene, 173, 33–38

    Article  PubMed  CAS  Google Scholar 

  • Crystal, R.G., 1995. Transfer of genes to humans: early lessons and obstacles to success. Science, 270, 404–410

    Article  PubMed  CAS  Google Scholar 

  • Donahue, R.E., Wersto, R.P., Allay, J.A., Agricola, B.A., Metzger, M.E., Nienhuis, A.W., Persons, D.A. and Sorrentino, B.P., 2000. High levels of lymphoid expression of enhanced green fluorescent protein in nonhuman primates transplanted with cytokine-mobilized peripheral blood CD34(+) cells. Blood, 95, 445–452

    PubMed  CAS  Google Scholar 

  • Eglitis, M.A., Kantoff, P.W., Jolly, J.D., Jones, J.B., Anderson, W.F. and Lothrop, C.D. Jr, 1988. Gene transfer into hematopoietic progenitor cells from normal and cyclic hematopoietic dogs using retroviral vectors. Blood, 71, 717–722

    PubMed  CAS  Google Scholar 

  • Eiden, M.V., Farrell, K.B. and Wilson, C.A., 1996. Substitution of a single amino acid residue is sufficient to allow the human amphotropic murine leukemia virus receptor to also function as a gibbon ape leukemia virus receptor. Journal of Virology, 70, 1080–1085

    PubMed  CAS  Google Scholar 

  • Felsburg, P.J., Somberg, R.L., Hartnett, B.J., Henthorn, P.S. and Carding, S.R., 1998. Canine X-linked severe combined immunodeficiency. A model for investigating the requirement for the common gamma chain (gamma c) in human lymphocyte development and function. Immunologic Research, 17, 63–73

    PubMed  CAS  Google Scholar 

  • Felsburg, P.J., Somberg, R.L., Hartnett, B.J., Suter, S.E., Henthorn, P.S., Moore, P.F., Weinberg, K.I. and Ochs, H.D., 1997. Full immunologic reconstitution following nonconditioned bone marrow transplantation for canine X-linked severe combined immunodeficiency. Blood, 90, 3214–3221

    PubMed  CAS  Google Scholar 

  • Gallacher, L., Murdoch, B., Wu, D.M., Karanu, F.N., Keeney, M. and Bhatia, M., 2000. Isolation and characterization of human CD34(−)Lin(−) and CD34(+)Lin(−) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood, 95, 2813–2820

    PubMed  CAS  Google Scholar 

  • Gatlin, J., Melkus, M.W., Padgett, A., Kelly, P.F. and Garcia, J.V., 2001. Engraftment of NOD/SCID mice with human CD34(+) cells transduced by concentrated oncoretroviral vector particles pseudotyped with the feline endogenous retrovirus (RD114) envelope protein. Journal of Virology, 75, 9995–9999

    Article  PubMed  CAS  Google Scholar 

  • Goerner, M., Bruno, B., Mcsweeney, P.A., Buron, G., Storb, R. and Kiem, H.P., 1999. The use of granulocyte colony-stimulating factor during retroviral transduction on fibronectin fragment CH-296 enhances gene transfer into hematopoietic repopulating cells in dogs. Blood, 94, 2287–2292

    PubMed  CAS  Google Scholar 

  • Goerner, M., Horn, P.A., Peterson, L., Kurre, P., Storb, R., Rasko, J.E. and Kiem, H.P., 2001. Sustained multilineage gene persistence and expression in dogs transplanted with CD34(+) marrow cells transduced by RD114-pseudotype oncoretrovirus vectors. Blood, 98, 2065–2070

    Article  PubMed  CAS  Google Scholar 

  • Goodell, M.A., Rosenzweig, M., Kim, H., Marks, D.F., Demaria, M., Paradis, G., Grupp, S.A., Sieff, C.A., Mulligan, R.C. and Johnson, R.P., 1997. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nature Medicine, 3, 1337–1345

    Article  PubMed  CAS  Google Scholar 

  • Gothot, A., Pyatt, R., McMahel, J., Rice, S. and Srour, E.F., 1998. Assessment of proliferative and colony-forming capacity after successive in vitro divisions of single human CD34+ cells initially isolated in G0. Experimental Hematology, 26, 562–570

    PubMed  CAS  Google Scholar 

  • Grez, M., Akgun, E., Hilberg, F. and Ostertag, W., 1990. Embryonic stem cell virus, a recombinant murine retrovirus with expression in embryonic stem cells. Proceedings of the National Academy of Sciences of the USA, 87, 9202–9206

    Article  PubMed  CAS  Google Scholar 

  • Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., et al., 2003. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science, 302, 415–419

    Article  PubMed  CAS  Google Scholar 

  • Hanenberg, H., Xiao, X.L., Dilloo, D., Hashino, K., Kato, I. and Williams, D.A., 1996. Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nature Medicine, 2, 876–882

    Article  PubMed  CAS  Google Scholar 

  • Hao, Q.L., Smogorzewska, E.M., Barsky, L.W. and Crooks, G.M., 1998. In vitro identification of single CD34+CD38− cells with both lymphoid and myeloid potential. Blood, 91, 4145–4151

    PubMed  CAS  Google Scholar 

  • Hao, Q.L., Thiemann, F.T., Petersen, D., Smogorzewska, E.M. and Crooks, G.M., 1996. Extended long-term culture reveals a highly quiescent and primitive human hematopoietic progenitor population. Blood, 88, 3306–3313

    PubMed  CAS  Google Scholar 

  • Hartnett, B.J., Yao, D., Suter, S.E., Ellinwood, N.M., Henthorn, P.S., Moore, P.E., Mcsweeney, P.A., Nash, R.A., Brown, J.D., Weinberg, K.I. and Felsburg, P.J., 2002. Transplantation of X-linked severe combined immunodeficient dogs with CD34+ bone marrow cells. Biology of Blood and Marrow Transplantation, 8, 188–197

    Article  PubMed  Google Scholar 

  • Henthorn, P.S., Somberg, R.L., Fimiani, V.M., Puck, J.M., Patterson, D.F. and Felsburg, P.J., 1994. IL-2R gamma gene microdeletion demonstrates that canine X-linked severe combined immunodeficiency is a homologue of the human disease. Genomics, 23, 69–74

    Article  PubMed  CAS  Google Scholar 

  • Ho, W.Z., Cherukuri, R., Ge, S.D., Cutilli, J.R., Song, L., Whitko, S. and Douglas, S.D., 1993. Centrifugal enhancement of human immunodeficiency virus type 1 infection and human cytomegalovirus gene expression in human primary monocyte/macrophages in vitro. Journal of Leukocyte Biology, 53, 208–212

    PubMed  CAS  Google Scholar 

  • Hodgkin, P.D., Scalzo, A.A., Swaminathan, N., Price, P. and Shellam, G.R., 1988. Murine cytomegalovirus binds reversibly to mouse embryo fibroblasts: implications for quantitation and explanation of centrifugal enhancement. Journal of Virological Methods, 22, 215–230

    Article  PubMed  CAS  Google Scholar 

  • Ishigawa, F., Livingston, A.G., Minamiguchi, H., Wingard, J.R. and Ogawa, M., 2003. Human cord blood long-term engrafting cells are CD34+CD38−. Leukemia, 17, 960–964

    Article  Google Scholar 

  • Jezyk, P.F., Felsburg, P.J., Haskins, M.E. and Patterson, D.F., 1989. X-linked severe combined immunodeficiency in the dog. Clinical Immunology and Immunopathology, 52, 173–189

    Article  PubMed  CAS  Google Scholar 

  • Kaleko, M., Garcia, J.V., Osborne, W.R. and Miller, A.D., 1990. Expression of human adenosine deaminase in mice after transplantation of genetically-modified bone marrow. Blood, 75, 1733–1741

    PubMed  CAS  Google Scholar 

  • Kaubisch, A., Ward, M., Schoetz, S., Hesdorffer, C. and Bank, A., 1999. Up-regulation of amphotrophic retroviral receptor expression in human peripheral blood CD34+ cells. American Journal of Hematology, 61, 243–253

    Article  PubMed  CAS  Google Scholar 

  • Kempler, G., Freitag, B., Berwin, B., Nanassy, O. and Barklis, E., 1993. Characterization of the Moloney murine leukemia virus stem cell-specific repressor binding site. Virology, 193, 690–699

    Article  PubMed  CAS  Google Scholar 

  • Kiem, H.P., Andrews, R.G., Morris, J., Peterson, L., Heyward, S., Allen, J.M., Rasko, J.E., Potter, J. and Miller, A.D., 1998. Improved gene transfer into baboon marrow repopulating cells using recombinant human fibronectin fragment CH-296 in combination with interleukin-6, stem cell factor, FLT-3 ligand, and megakaryocyte growth and development factor. Blood, 92, 1878–1886

    PubMed  CAS  Google Scholar 

  • Kiem, H.P., Heyward, S., Winkler, A., Potter, J., Allen, J.M., Miller, A.D. and Andrews, R.G., 1997. Gene transfer into marrow repopulating cells: comparison between amphotropic and gibbon ape leukemia virus pseudotyped retroviral vectors in a competitive repopulation assay in baboons. Blood, 90, 4638–4645

    PubMed  CAS  Google Scholar 

  • Kiem, H.P., Mcsweeney, P.A., Bruno, B., Goerner, M., Buron, G., Morris, J., Storb, R. and Miller, A.D., 1999. Improved gene transfer into canine hematopoietic repopulating cells using CD34-enriched marrow cells in combination with a gibbon ape leukemia virus-pseudotype retroviral vector. Gene Therapy, 6, 966–972

    Article  PubMed  CAS  Google Scholar 

  • Kijas, J.M., Bauer, T.R., Gafvert, S., Marklund, S., Trowald-Wigh, G., Johannisson, A., Hedhammer, A., Binns, M., Junija, R.K., Hickstein, D.D. and Anderson, L., 1999. A missense mutation in the beta-2 integrin gene (ITGB2) causes canine leukocyte adhesion deficiency. Genomics, 61, 101–107

    Article  PubMed  CAS  Google Scholar 

  • Kotani, H., Newton, P.B. 3rd, Zhang, S., Chiang, Y.L., Otto, E., Weaver, L., Blaese, R.M., Anderson, W.F. and McGarrity, G.J., 1994. Improved methods of retroviral vector transduction and production for gene therapy. Human Gene Therapy, 5, 19–28

    PubMed  CAS  Google Scholar 

  • Kwok, W.W., Schuening, F., Stead, R.B. and Miller, A.D., 1986. Retroviral transfer of genes into canine hemopoietic progenitor cells in culture: a model for human gene therapy. Proceedings of the National Academy of Sciences of the USA, 83, 4552–4555

    Article  PubMed  CAS  Google Scholar 

  • Ladiges, W.C., Storb, R. and Thomas, E.D., 1990. Canine models of bone marrow transplantation. Laboratory Animal Science, 40, 11–15

    PubMed  CAS  Google Scholar 

  • Larochelle, A., Vormoor, J., Hanenberg, H., Wang, J.C., Bhatia, M., Lapidot, T., Moritz, T., Murdoch, B., Xiao, X.L., Kato, I., Williams, D.A. and Dick, J.E., 1996. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nature Medicine, 2, 1329–1337

    Article  PubMed  CAS  Google Scholar 

  • Leonard, W.J., 1996. The molecular basis of X-linked severe combined immunodeficiency: defective cytokine receptor signaling. Annual Review of Medicine, 47, 229–239

    Article  PubMed  CAS  Google Scholar 

  • Lutzko, C., Omori, F., Abrams-Ogg, A.C., Shull, R., Li, L., Lau, K., Ruedy, C., Nanji, S., Gartley, C., Dobson, H., Foster, R., Kruth, S. and Dube, I.D., 1999. Gene therapy for canine alpha-l-iduronidase deficiency: in utero adoptive transfer of genetically corrected hematopoietic progenitors results in engraftment but not amelioration of disease. Human Gene Therapy, 10, 1521–1532

    Article  PubMed  CAS  Google Scholar 

  • McSweeney, P.A., Rouleau, K.A., Wallace, P.M., Bruno, B., Andrews, R.G., Krizanac-Bengez, L., Sandmaier, B.M., Storb, R., Wayner, E. and Nash, R.A., 1998. Characterization of monoclonal antibodies that recognize canine CD34. Blood, 91, 1977–1986

    PubMed  CAS  Google Scholar 

  • Menon, K.P., Tieu, P.T. and Neufeld, E.F., 1992. Architecture of the canine IDUA gene and mutation underlying canine mucopolysaccharidosis I. Genomics, 14, 763–768

    Article  PubMed  CAS  Google Scholar 

  • Miller, D.G., Adam, M.A. and Miller, A.D., 1990. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection [erratum 1992, 12(1), 433]. Molecular and Cellular Biology, 10, 4239–4242

    PubMed  CAS  Google Scholar 

  • Miller, J.S., McCullar, V., Punzel, M., Lemischka, I.R. and Moore, K.A., 1999. Single adult human CD34(+)/Lin−/CD38(−) progenitors give rise to natural killer cells, B-lineage cells, dendritic cells, and myeloid cells. Blood, 93, 96–106

    PubMed  CAS  Google Scholar 

  • Morris, J.C., Conerly, M., Thomasson, B., Storek, J., Riddell, S.R. and Kiem, H.P., 2004. Induction of cytotoxic T-lymphocyte responses to enhanced green and yellow fluorescent proteins after myeloablative conditioning. Blood, 103, 492–499

    Article  PubMed  CAS  Google Scholar 

  • Murray, L., Luens, K., Tushinski, R., Jin, L., Burton, M., Chen, J., Forestell, S. and Hill, B., 1999. Optimization of retroviral gene transduction of mobilized primitive hematopoietic progenitors by using thrombopoietin, Flt3, and Kit ligands and RetroNectin culture. Human Gene Therapy, 10, 1743–1752

    Article  PubMed  CAS  Google Scholar 

  • Namikawa, R., Weilbaecher, K.N., Kaneshima, H, Yee, E.J. and McCune, J.M., 1990. Long-term human hematopoiesis in the SDIC-hu mouse. Journal of Experimental Medicine, 172, 1055–1063

    Article  PubMed  CAS  Google Scholar 

  • Nolta, J.A., Dao, M.A., Wells, S., Smogorzewska, E.M. and Kohn, D.B., 1996. Transduction of pluripotent human hematopoietic stem cells demonstrated by clonal analysis after engraftment in immune-deficient mice. Proceedings of the National Academy of Sciences of the USA, 93, 2414–2419

    Article  PubMed  CAS  Google Scholar 

  • Orlic, D., Girard, L.J., Jordan, C.T., Anderson, S.M., Cline, A.P. and Bodine, D.M., 1996. The level of mRNA encoding the amphotropic retrovirus receptor in mouse and human hematopoietic stem cells is low and correlates with the efficiency of retrovirus transduction. Proceedings of the National Academy of Sciences of the USA, 93, 11097–11102

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, L., Johann, S.V., Van Zeijl, M., Pedersen, F.S. and O'Hara, B., 1995. Chimeras of receptors for gibbon ape leukemia virus/feline leukemia virus B and amphotropic murine leukemia virus reveal different modes of receptor recognition by retrovirus. Journal of Virology, 69, 2401–2405

    PubMed  CAS  Google Scholar 

  • Peries, J., Debons-Guillemin, M.C., Canivet, M., Emanoil-Ravicovitch, R., Tavitian, A. and Boiron, M., 1977. Multiplication of murine C-type viruses in mouse teratocarcinoma cell lines. Nouvelle Revue Francaise d'Hematologie; Blood Cells, 18, 383–390

    PubMed  CAS  Google Scholar 

  • Peters, S.O., Kittler, E.L., Ramshaw, H.S. and Quesenberry, P.J., 1996. Ex vivo expansion of murine marrow cells with interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor leads to impaired engraftment in irradiated hosts. Blood, 87, 30–37

    PubMed  CAS  Google Scholar 

  • Ponchio, L., Conneally, E. and Eaves, C., 1995. Quantitation of the quiescent fraction of long-term culture-initiating cells in normal human blood and marrow and the kinetics of their growth factor-stimulated entry into S-phase in vitro. Blood, 86, 3314–3321

    PubMed  CAS  Google Scholar 

  • Pullen, R.P., Somberg, R.L., Felsburg, P.J. and Henthorn, P.S., 1997. X-linked severe combined immunodeficiency in a family of Cardigan Welsh corgis. Journal of the American Animal Hospital Association, 33, 494–499

    PubMed  CAS  Google Scholar 

  • Ratajczak, M.Z., Pletcher, C.H., Marlicz, W., Machalinski, B., Moore, J., Wasik, M., Ratajczak, J. and Gewirtz, A.M., 1998. CD34+, kit+, rhodamine123(low) phenotype identifies a marrow cell population highly enriched for human hematopoietic stem cells. Leukemia, 12, 942–950

    Article  PubMed  CAS  Google Scholar 

  • Ray, J., Haskins, M.E. and Ray, K., 1998. Molecular diagnostic tests for ascertainment of genotype at the mucopolysaccharidosis type VII locus in dogs. American Journal of Veterinary Research, 59, 1092–1095

    PubMed  CAS  Google Scholar 

  • Sabatino, D.E., Do, B.Q., Pyle, L.C., Seidel, N.E., Girard, L.J., Spratt, S.K., Orlic, D. and Bodine, D.M., 1997. Amphotropic or gibbon ape leukemia virus retrovirus binding and transduction correlates with the level of receptor mRNA in human hematopoietic cell lines. Blood Cells, Molecules, and Diseases, 23, 422–433

    Article  PubMed  CAS  Google Scholar 

  • Sandrin, V., Boson, B., Salmon, P., Gay, W., Negre, D., Le Grand, R., Trono, D. and Cosset, F.L., 2002. Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood, 100, 823–832

    Article  PubMed  CAS  Google Scholar 

  • Sanyal, A. and Schuening, F.G., 1999. Increased gene transfer into human cord blood cells by centrifugation-enhanced transduction in fibronectin fragment-coated tubes. Human Gene Therapy, 10, 2859–2868

    Article  PubMed  CAS  Google Scholar 

  • Schuening, F.G., Storb, R., Stead, R.B., Goehle, S., Nash, R. and Miller, A.D., 1989. Improved retroviral transfer of genes into canine hematopoietic progenitor cells kept in long-term marrow culture. Blood, 74, 152–155

    PubMed  CAS  Google Scholar 

  • Somberg, R.L., Pullen, R.P., Casal, M.L., Patterson, D.F., Felsburg, P.J. and Henthorn, P.S., 1995. A single nucleotide insertion in the canine interleukin-2 receptor gamma chain results in X-linked severe combined immunodeficiency disease. Veterinary Immunology and Immunopathology, 47, 203–213

    Article  PubMed  CAS  Google Scholar 

  • Speers, W.C., Gaustch, J.W. and Dixon, F.J., 1980. Silent infection of murine embryonal carcinoma cells by Moloney murine leukaemia virus. Virology, 105, 241–244

    Article  PubMed  CAS  Google Scholar 

  • Stead, R.B., Kwok, W.W., Storb, R. and Miller, A.D., 1988. Canine model for gene therapy: inefficient gene expression in dogs reconstituted with autologous marrow infected with retroviral vectors. Blood, 71, 742–747

    PubMed  CAS  Google Scholar 

  • Storb, R., Yu, C., Deeg, H.J., Georges, G., Kiem, H.P., Mcsweeney, P.A., Nash, R.A., Sandmaier, B.M., Sullivan, K.M., Wagner, J.L. and Walters, M.C., 1998. Current and future preparative regimens for bone marrow transplantation in thalassemia. Annals of the New York Academy of Sciences, 850, 276–287

    Article  PubMed  CAS  Google Scholar 

  • Stripecke, R., Carmen Villacres, M., Skelton, D., Satake, N., Halene, S. and Kohn, D., 1999. Immune response to green fluorescent protein: implications for gene therapy. Gene Therapy, 6, 1305–1312

    Article  PubMed  CAS  Google Scholar 

  • Sugamura, K., Asao, H., Kondo, M., Tanaka, N., Ishii, N., Ohbo, K., Nakamura, M. and Takeshita, T., 1996. The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annual Review of Immunology, 14, 179–205

    Article  PubMed  CAS  Google Scholar 

  • Suter, S.E., Gouthro, T.A., Mcsweeney, P.A., Nash, R.A., Haskins, M.E., Felsburg, P.J. and Henthorn, P.S., 2004. Isolation and characterization of paediatric canine bone marrow CD34(+) cells. Veterinary Immunology and Immunopathology, 101, 31–47

    Article  PubMed  CAS  Google Scholar 

  • Teich, N.M., Weiss, R.A., Martine, G.R. and Lowry, D.R., 1977. Virus infection of murine teratocarcinoma stem cell lines. Cell, 12, 973–982

    Article  PubMed  CAS  Google Scholar 

  • Traycoff, C.M., Cornetta, K., Yoder, M.C., Davidson, A. and Srour, E.F., 1996. Ex vivo expansion of murine hematopoietic progenitor cells generates classes of expanded cells possessing different levels of bone marrow repopulating potential. Experimental Hematology, 24, 299–306

    PubMed  CAS  Google Scholar 

  • Van Beusechem, V.W. and Valerio, D., 1996. Gene transfer into hematopoietic stem cells of nonhuman primates. Human Gene Therapy, 7, 1649–1668

    PubMed  Google Scholar 

  • Von Kalle, C., Kiem, H.P., Goehle, S., Darovsky, B., Heimfeld, S., Torok-Storb, B., Storb, R. and Schuening, F.G., 1994. Increased gene transfer into human hematopoietic progenitor cells by extended in vitro exposure to a pseudotyped retroviral vector. Blood, 84, 2890–2897

    Google Scholar 

  • Vormoor, J., Lapidot, T., Pflumio, F., Risdon, G., Patterson, B., Broxmeyer, H.E. and Dick, J.E., 1994. Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice. Blood, 83, 2489–2497

    PubMed  CAS  Google Scholar 

  • Weiher, H., Barklis, E., Ostertag, W. and Jaenisch, R., 1987. Two distinct sequence elements mediate retroviral gene expression in embryonal carcinoma cells. Journal of Virology, 61, 2742–2746

    PubMed  CAS  Google Scholar 

  • Wenger, D., 2000. Murine, canine, and non-human primate models of Keabbe disease. Molecular Medicine Today, 6, 449–451

    Article  PubMed  CAS  Google Scholar 

  • Wu, T., Kim, H.J., Sellers, S.E., Meade, K.E., Agricola, B.A., Metzer, M.E., Kato, I., Donahue, R.E., Dunbar, C.E. and Tisdale, J.F., 2000. Prolonged high-level detection of retrovirally marked hematopoietic cells in nonhuman primates after transduction of CD34+ progenitors using clinically feasible methods. Molecular Therapy, 1, 285–293

    Article  PubMed  CAS  Google Scholar 

  • Wunderli, P.S. and Felsburg, P.J., 1989. An improved method for the isolation of enriched canine peripheral blood mononuclear cell and peripheral blood lymphocyte preparations. Veterinary Immunology and Immunopathology, 20, 335–344

    Article  PubMed  CAS  Google Scholar 

  • Zhang, G., Gurtu, V. and Kain, S.R., 1996. An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochemical and Biophysical Research Communications, 227, 707–711

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Suter.

Additional information

Suter, S.E., Gouthro, T.A., McSweeney, P.A., Nash, R.A., Haskins, M.E., Felsburg, P.J. and P.S. Henthorn, 2006. Optimized transduction of canine paediatric CD34+ cells using an MSCV-based bicistronic vector. Veterinary Research Communications, 30(8), 881–901

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suter, S.E., Gouthro, T.A., McSweeney, P.A. et al. Optimized Transduction of Canine Paediatric CD34+ Cells Using an MSCV-based Bicistronic Vector. Vet Res Commun 30, 881–901 (2006). https://doi.org/10.1007/s11259-006-3356-7

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-006-3356-7

Keywords

Navigation