Skip to main content
Log in

Biogeography and evolution of seeder and resprouter forms of Erica coccinea (Ericaceae) in the fire-prone Cape fynbos

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The genus Erica represents the epitome of plant biodiversity in the South African Cape fynbos with over 700 species. This genus is composed of seeder and resprouter species, but both species diversity and endemism are strongly linked to the seeder habit and concentrated in the southwestern Cape Floristic Region (CFR). Erica coccinea is a relatively abundant and widespread fynbos species whose most remarkable morphological feature is the existence of distinct seeder and resprouter forms, frequently—but not always—in disjunct populations. Both higher within-population genetic diversity and among-population differentiation have been found in seeders, most likely as a consequence of the shorter generation times and faster population turnovers. Resprouters, despite being less diverse, are suspected to be ancestral. However, no solid evidence has yet been provided for the ancestrality of the resprouter form, or for the demographic processes that have determined the current distribution of genetic diversity in both regeneration forms. Here, we used microsatellites and sequences of the nuclear ribosomal internal transcribed spacers to describe the phylogeographic structure of seeder and resprouter E. c occinea populations and provide good evidence for the ancestral status of the resprouter form and the comparatively high rates of molecular evolution in derived seeder populations. We also reveal that mixed populations, where both seeder and resprouter individuals co-occur, were originated by secondary contacts. This study highlights the role of fire in driving accelerated diversification in seeder lineages of highly speciose CFR fynbos taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar JF, Nieto Feliner G (2003) Additive polymorphisms and reticulation in an ITS phylogeny of thrifts (Armeria, Plumbaginaceae). Mol Phylogenet Evol 28:430–447

    Article  Google Scholar 

  • Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434

    Article  PubMed  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Bandelt H, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Barraclough TG (2006) What can phylogenetics tell us about speciation in the Cape flora? Divers Distrib 12:21–26

    Article  Google Scholar 

  • Bell TL, Ojeda F (1999) Underground starch storage in Erica species of the Cape Floristic Region—differences between nonsprouters and resprouters. New Phytol 144:143–152

    Article  CAS  Google Scholar 

  • Blanco-Pastor JL, Vargas P, Pfeil BE (2012) Coalescent simulations reveal hybridization and incomplete lineage sorting in Mediterranean Linaria. PLoS One 7(6):e39089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Born C, Hardy OJ, Chevallier MH, Ossari S, Attéké C, Wickings EJ, Hossaert-Mckey M (2008) Small-scale spatial genetic structure in the Central African rainforest tree species Aucoumea klaineana: a stepwise approach to infer the impact of limited gene dispersal, population history and habitat fragmentation. Mol Ecol 17:2041–2050

    Article  PubMed  Google Scholar 

  • Bouillé M, Bousquet J (2005) Trans-species shared polymorphisms at orthologous nuclear gene loci among distant species in the conifer Picea (Pinaceae): implications for the long-term maintenance of genetic diversity in trees. Am J Bot 92:63–73

    Article  PubMed  Google Scholar 

  • Bytebier B, Antonelli A, Bellstedt DU, Linder HP (2011) Estimating the age of fire in the Cape flora of South Africa from an orchid phylogeny. Proc R Soc Lond Biol 278:188–195

    Article  Google Scholar 

  • Campbell BM (1986) Montane plant communities of the Fynbos Biome. Vegetatio 66:3–16

    Article  Google Scholar 

  • Cornuet JM, Santos F, Beaumont MA, Robert CP, Marin JM, Balding DJ et al (2008) Inferring population history with DIYABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24:2713–2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowling RM (1987) Fire and its role in coexistence and speciation in Gondwanan shrublands. S Afr J Sci 83:106–112

    Google Scholar 

  • Cowling RM, Potts AJ, Bradshaw PL, Colville J, Arianoutsou M, Ferrier S, Forest F, Fyllas NM, Hopper SD, Ojeda F, Proches S, Smith RJ, Rundel PW, Vassilakis E, Zutta BR (2015) Variation in plant diversity in mediterranean-climate ecosystems: the role of climatic and topographical stability. J Biogeogr 42:552–564

    Article  Google Scholar 

  • Cowling RM, Proches S, Partridge TC (2009) Explaining the uniqueness of the Cape flora: incorporating geomorphic evolution as a factor explaining its diversification. Mol Phylogenet Evol 51:64–74

    Article  PubMed  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F et al (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dick CW, Heuertz M (2008) The complex biogeographic history of a widespread tropical tree species. Evolution 62:2760–2774

    Article  CAS  PubMed  Google Scholar 

  • Ellis AG, Verboom GA, van der Niet T, Johnson SD, Linder HP (2014) Speciation and extinction in the Greater Cape Floristic Region. In: Allsopp N, Colville JF, Verboom GA (eds) Fynbos: ecology, evolution and conservation of a megadiverse region. Oxford University Press, Oxford, pp 119–141

    Chapter  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldblatt P, Manning JC (2002) Plant diversity of the Cape region of southern Africa. Ann Missouri Bot Gard 89:281–302

    Article  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Article  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Ishida S, Taylor DJ (2007) Quaternary diversification in a sexual Holarctic zooplankter, Daphnia galeata. Mol Ecol 16:569–582

    Article  PubMed  Google Scholar 

  • Jia DR, Liu TL, Wang LY, Zhou DW, Liu JQ (2011) Evolutionary history of an alpine shrub Hippophae tibetana (Elaeagnaceae): allopatric divergence and regional expansion. Biol J Linn Soc 102:37–50

    Article  Google Scholar 

  • Knowles LL (2009) Statistical phylogeography. Annu Rev Ecol Evol Syst 40:593–612

    Article  Google Scholar 

  • Lamont BB, Enright NJ, He T (2011) Fitness and evolution of resprouters in relation to fire. Plant Ecol 212:1945–1957

    Article  Google Scholar 

  • Latta RG, Mitton JB (1999) Historical separation and present gene flow through a zone of secondary contact in ponderosa pine. Evolution 53:769–776

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Linder HP (2003) The radiation of the Cape flora, southern Africa. Biol Rev 78:597–638

    Article  CAS  PubMed  Google Scholar 

  • Litsios G, Wüest RO, Kostikova A, Forest F, Lexer C, Linder HP, Pearman PB, Zimmermann NE, Salamin N (2014) Effects of a fire response trait on diversification in replicated radiations. Evolution 68:453–465

    Article  PubMed  Google Scholar 

  • Malan MC (2013) Intraspecific variation in Erica coccinea. MSc Thesis, University of Cape Town, South Africa. https://open.uct.ac.za/handle/11427/6672

  • Marean CW, Cawthra HC, Cowling RM, Esler KJ, Fisher E, Milewski A, Potts AJ, Singels E, De Vynck J (2014) Stone age people in a changing South African greater Cape Floristic Region. In: Allsopp N, Colville JF, Verboom GA (eds) Ecology and evolution of fynbos: understanding megadiversity. Oxford University Press, Oxford, pp 164–199

    Google Scholar 

  • Mcdonald DJ, Juritz JM, Cowling RM, Knottenbelt WJ (1995) Modelling the biological aspects of local endemism in South African Fynbos. Plant Syst Evol 195:137–147

    Article  Google Scholar 

  • Midgley GF, Reeves G, Klak C, Richardson J (2005) Late tertiary and quaternary climate change and centers of endemism in the southern African flora. In: Purvis A, Gittleman J, Brooks T (eds) Phylogeny and conservation. Cambridge University Press, Cambridge, pp 230–242

    Chapter  Google Scholar 

  • Migliore J, Baumel A, Juin M, Médail F (2012) From Mediterranean shores to central Saharan mountains: key phylogeographical insights from the genus Myrtus. J Biogeogr 39:942–956

    Article  Google Scholar 

  • Müller K, Albach DC (2010) Evolutionary rates in Veronica L. (Plantaginaceae): disentangling the influence of life history and breeding system. J Mol Ecol 70:44–56

    Article  Google Scholar 

  • Ojeda F (1998) Biogeography of seeder and resprouter Erica species in the Cape Floristic Region-where are the resprouters? Biol J Linn Soc 63:331–347

    Google Scholar 

  • Ojeda F, Brun FG, Vergara JJ (2005) Fire, rain, and the selection of seeder and resprouter life-histories in fire-recruiting, woody plants. New Phytol 168:155–165

    Article  PubMed  Google Scholar 

  • Oliver EGH (1991) The Ericoideae (Ericaceae)—a review. Contrib Bolus Herb 13:158–208

    Google Scholar 

  • Oliver EGH, Oliver IM (2002) The genus Erica (Ericaceae) in southern Africa: taxonomic notes 1. Bothalia 32:37–62

    Google Scholar 

  • Pirie MD, Oliver EGH, Bellstedt DU (2011) A densely sampled ITS phylogeny of the Cape flagship genus Erica L. suggests numerous shifts in floral macro-morphology. Mol Phylogenet Evol 61:593–601

    Article  PubMed  Google Scholar 

  • Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45

    Article  PubMed  Google Scholar 

  • Schnitzler J, Barraclough TG, Boatwright JS, Goldblatt P, Manning JC, Powell MP, Rebelo T, Savolainen V (2011) Causes of plant diversification in the Cape biodiversity hotspot of South Africa. Syst Biol 60:343–357

    Article  PubMed  Google Scholar 

  • Segarra-Moragues JG, Ojeda F (2010) Postfire response and genetic diversity in Erica coccinea: connecting population dynamics and diversification in a biodiversity hotspot. Evolution 64:3511–3524

    Article  PubMed  Google Scholar 

  • Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166

    Article  CAS  PubMed  Google Scholar 

  • Simons AM (2002) The continuity of microevolution and macroevolution. J Evol Biol 15:688–701

    Article  Google Scholar 

  • Smith SA, Donoghue MJ (2008) Rates of molecular evolution are linked to life history in flowering plants. Science 322:86–89

    Article  CAS  PubMed  Google Scholar 

  • Soria-Hernanz DF, Fiz-Palacios O, Braverman JM, Hamilton MB (2008) Reconsidering the generation time hypothesis based on nuclear ribosomal ITS sequence comparisons in annual and perennial angiosperms. BMC Evol Biol 8:344

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verboom GA, Linder HP, Forest F, Hoffmann V, Bergh NG, Cowling RW (2014) Cenozoic assembly of the Greater Cape Flora. In: Allsopp N, Colville JF, Verboom GA (eds) Fynbos: ecology, evolution and conservation of a megadiverse region. Oxford University Press, Oxford, pp 93–118

    Chapter  Google Scholar 

  • Verdaguer D, Ojeda F (2002) Root starch storage and allocation patterns in seeder and resprouter seedlings of two Cape Erica (Ericaceae) species. Am J Bot 89:1189–1196

    Article  PubMed  Google Scholar 

  • Verdaguer D, Ojeda F (2005) Evolutionary transition from resprouter to seeder life history in two Erica (Ericaceae) species: insights from seedling axillary buds. Ann Bot 95:593–599

    Article  PubMed  PubMed Central  Google Scholar 

  • Verdú M, Pausas JG, Segarra-Moragues JG, Ojeda F (2007) Burning phylogenies: fire, molecular evolutionary rates, and diversification. Evolution 61:2195–2204

    Article  PubMed  Google Scholar 

  • Wells PV (1969) The relation between mode of regeneration and extent of speciation in woody genera of the California chaparral. Evolution 23:264–267

    Article  Google Scholar 

  • Whittle CA, Johnston MO (2003) Broad-scale analysis contradicts the theory that generation time affects molecular evolutionary rates in plants. J Mol Evol 56:223–233

    Article  CAS  PubMed  Google Scholar 

  • Yue JX, Li J, Wang D, Araki H, Tian D, Yang S (2010) Genome-wide investigation reveals high evolutionary rates in annual model plants. BMC Plant Biol 10:242

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This contribution is dedicated to the memory of Peter Clarke, whose passionate interest in the evolutionary relationships between plants and fire has been so contagious and inspiring. The manuscript benefited greatly from comments by two anonymous referees. Cape Nature and SANPARKS issued the necessary permits for fieldwork. FO strongly thanks the Spanish Ministerio de Educación (travel Grant PR2010-0365) and the UCA Plan Propio de Investigación for providing travelling bursaries to do fieldwork. KBB acknowledges a PhD scholarship (FPI, BES-2009-015443) of the Spanish Ministry of Science and Innovation (MICINN). MH acknowledges a Ramón y Cajal fellowship (RYC2009-04537) from the Spanish Ministry of Science and Education (MICINN), and funding from the Research Council of Norway (203822/E40) and the Spanish Ministry of Economy and Competitiveness (CGL2012-40129-C02-02). SCGM and MH acknowledge the support of Marie Curie Intra European Fellowships within the 7th European Community Framework Programme (FP7-PEOPLE-2012-IEF, project nos. 328146 and 329088, respectively). JGS-M acknowledges a Ramón y Cajal fellowship (RYC2009-05164) from MICINN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Ojeda.

Additional information

Communicated by Prof. Michael Lawes, Prof. Ross Bradstock and Prof. David Keith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 674 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojeda, F., Budde, K.B., Heuertz, M. et al. Biogeography and evolution of seeder and resprouter forms of Erica coccinea (Ericaceae) in the fire-prone Cape fynbos . Plant Ecol 217, 751–761 (2016). https://doi.org/10.1007/s11258-015-0539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-015-0539-8

Keywords

Navigation