Skip to main content

Advertisement

Log in

Humidity, low temperature extremes, and space influence floristic variation across an insightful gradient in the Subtropical Atlantic Forest

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The use of well-sampled regions and insightful environmental gradients can provide important theoretical knowledge for understanding the drivers of tropical forest patterns and processes, which are necessary for biological conservation. We investigated the variation in tree species composition across a vegetation gradient in the Subtropical Atlantic Forest, as well as various predictors that could impact such patterns. The exploratory and confirmatory analyses included 178 sampling units distributed among 13 different forest types containing binary occurrence records for 935 species from 25,546 trees. Confirmatory analyses were conducted considering spatial autocorrelation, a well-known factor responsible for type I error inflations. The floristic heterogeneity of the study area was revealed by clear patterns of floristic differentiation between vegetation types, as well as by the significant improvements in local models (GWR—geographically weighted regressions) over global models (OLS—ordinary least squares). We found that the observed floristic variation has most likely been driven by humidity from the Atlantic Ocean, low temperature extremes and geographic distance. The latter was revealed by the high contribution of spatial components to the partial models. These results from a shrinking biological hotspot, particularly those concerning the importance of temperature extremes, represent crucial data for identifying conservation priorities, especially considering the seriousness of the temperature shifts predicted by global climate change scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-Shami SA, Che Salmah MR, Abu Hassan A, Madrus MR (2013) Biodiversity of stream insects in the Malaysian Peninsula: spatial patterns and environmental constraints. Ecol Entomol 38:238–249. doi:10.1111/een.12013

    Article  Google Scholar 

  • Andrade AR, Baldo MC, Nery JT (1999) Variabilidade sazonal da precipitação pluviométrica de Santa Catarina. Acta Scient 21:923–928. doi:10.4025/actascitechnol.v2li0.3164

    Google Scholar 

  • Arntzen JW, Themudo GE (2008) Environmental parameters that determine species geographical range limits as a matter of time and space. J Biogeogr 35:1177–1186. doi:10.1111/j.1365-2699.2007.01875.x

    Article  Google Scholar 

  • Assis AM, Thomaz LD, Pereira OJ (2004) Florística de um trecho de floresta de restinga no município de Guarapari, Espírito Santo, Brasil. Acta Bot Bras 18:191–291. doi:10.1590/S0102-33062004000100016

    Article  Google Scholar 

  • Baldo MC, Andrade AR, De Martins MLOF, Nery JT (2000) Análise da precipitação pluvial do Estado de Santa Catarina associada com a anomalia da temperatura da superfície do mar no oceano Pacífico. Revis Bras Agrometeorol 8:283–293

    Google Scholar 

  • Behling H (1997) Late quaternary vegetation, climate and fire history of Araucaria forest and campos region from Serra Campo Gerais Paraná state (South Brazil). Rev Palaeobot Palynol 97:109–121. doi:10.1016/S0031-0182(03)00687-4

    Article  Google Scholar 

  • Behling H, Negrelle RRB (2001) Tropical rain forest and climate dynamics of the atlantic lowland, southern brazil, during the late quaternary. Quat Res 56:383–389. doi:10.1006/qres.2001.2264

    Article  Google Scholar 

  • Behling H, Pillar VD, Bauermann SG (2005) Late quaternary grassland (Campos), gallery forest, fire and climate dynamics, studied by pollen, charcoal and multivariate analysis of the São Francisco de Assis core in western Rio Grande do Sul (southern Brazil). Rev Palaeobot Palynol 133:235–248. doi:10.1016/j.revpalbo.2004.10.004

    Article  Google Scholar 

  • Bertoncello R, Yamamoto K, Meireles LD, Shepherd GJ (2011) A phytogeographic analysis of cloud forests and other forest subtypes amidst the Atlantic forests in south and southeast Brazil. Biodivers Conserv 20:3413–3433. doi:10.1007/s10531-011-0129-6

    Article  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632. doi:10.1890/07-0986.1

    Article  PubMed  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  • Box EO, Fujiwara K (2005) Vegetation types and their broad-scale distribution. In: Maarel EVD (ed) Vegetation ecology. Blackwell Publishing, Oxford, pp 106–128

    Google Scholar 

  • Bubb P, May I, Miles L, Sayer J (2004) Cloud forest agenda. UNEP WCMC, Cambridge

    Google Scholar 

  • Catarina Santa (1986) Atlas de Santa Catarina, Santa Catarina. Gabinete de Planejamento e Coordenação Geral, Rio de Janeiro

    Google Scholar 

  • Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182. doi:10.1111/j.1461-0248.2005.00820.x

    Article  PubMed  Google Scholar 

  • Dalling JW, Muller-Landau HC, Wright SJ, Hubbell SP (2002) Role of dispersal in recruitment limitation in six pioneer species. J Ecol 90:714–727. doi:10.1046/j.1365-2745.2002.00706.x

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM (2005) Modelling geographical patterns in species richness using eigenvector-based spatial filters. Glob Ecol Biogeogr 14:177–185. doi:10.1111/j.1466-822x.2005.00147.x

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 2:53–64. doi:10.1046/j.1466-822x.2003.00322.x

    Article  Google Scholar 

  • Diniz-Filho JAF, Siqueira T, Padial AA, Rangel TF, Landeiro VL, Bini LM (2012) Spatial autocorrelation analysis allows disentangling the balance between neutral and niche processes in metacommunities. Oikos 121:201–210. doi:10.1111/j.1600-0706.2011.19563.x

    Article  Google Scholar 

  • Dray S, Legendre P, Peres-Neto P (2006) Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol Model 196:483–493. doi:10.1016/j.ecolmodel.2006.02.015

    Article  Google Scholar 

  • Dray S, Pélissier R, Couteron P, Fortin M-J et al (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr 82:257–275. doi:10.1890/11-1183.1

    Article  Google Scholar 

  • Echer MPS, Martins FR, Pereira EB (2006) A importância dos dados de cobertura de nuvens e de sua variabilidade: metodologias para aquisição de dados. Rev Brasil Ensino de Fis 28:341–352. doi:10.1590/S1806-11172006000300011

    Article  Google Scholar 

  • Epagri (2008) Atlas climatológico do estado de Santa Catarina. http://ciram.epagri.rct-sc.br/. Accessed 28 June 2013

  • ESRI (2010) ArcGis desktop: release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Falkenberg DB, Voltolini JC (1995) The montane cloud forest in southern Brazil. In: Hamilton LS, Juvik JO, Scatena FN (eds) Tropical montane cloud forest. Springer, New York, pp 138–149

    Chapter  Google Scholar 

  • Felfili JM, Rezende RP (2003) Conceitos e métodos em fitossociologia. Departamento de Engenharia Florestal, Universidade de Brasília, Brasília

    Google Scholar 

  • Finger Z, Filho EO (2014) Efeitos do solo e da altitude sobre a distribuição de espécies arbóreas em remanescentes de cerrado sensu stricto. Adv For Sci 1:27–33

    Google Scholar 

  • Fortin M-J, Dale MRT (2005) Spatial analysis. A guide for ecologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, Chichester

    Google Scholar 

  • Gardner TA, Barlow J, Araújo IS, Ávila-Pires TC et al (2008) The cost-effectiveness of biodiversity surveys in tropical forests. Ecol Lett 11:139–150. doi:10.1111/j.1461-0248.2007.01133.x

    Article  PubMed  Google Scholar 

  • Gasper AL, Eisenlohr PV, Salino A (2013) Climate-related variables and geographic distance affect fern species composition across a vegetation gradient in a shrinking hotspot. Plant Ecol Divers. doi:10.1080/17550874.2013.843604

    Google Scholar 

  • Gonçalves ET, Souza AF (2013) Floristic variation in ecotonal areas: patterns, determinants and biogeographic origins of subtropical forests in South America. Austral Ecol 39:122–134. doi:10.1111/aec.12051

    Article  Google Scholar 

  • Higuchi P, Silva AN, Almeida JA, Bortoluzzi RLC, Mantovani A, Ferreira TS, Souza ST, Gomes JP, Silva KM (2013) Floristic composition and structure of the tree component and Environmental analysis of a fragment of a highland Araucaria forest in the municipality of Painel, Santa Catarina State. Cienc Flor 23:153–164. doi:10.1590/S0100-84042012000200004

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Hof AR, Jansson R, Nilsson C (2012) The usefulness of elevation as a predictor variable in species distribution modelling. Ecol Model 246:86–90. doi:10.1016/j.ecolmodel.2012.07.028

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Joly CA, Aidar MPM, Klink CA et al (1999) Evolution of the Brazilian phytogeography classification systems: implications for biodiversity conservation. Cienc Cult 51:331–348

    Google Scholar 

  • Jones M, Tuomisto H, Borcard D, Legendre P, Clark D, Olivas P (2008) Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia 155:593–604. doi:10.1007/s00442-007-0923-8

    Article  PubMed  Google Scholar 

  • Klein RM (1978) Mapa fitogeográfico do estado de Santa Catarina. Herbario Barbosa Rodrigues, Itajaí

    Google Scholar 

  • Laurance WF (2009) Conserving the hottest of the hotspots. Biol Conserv 142:1137. doi:10.1016/j.biocon.2008.10.011

    Article  Google Scholar 

  • Legendre P, Fortin M-J (1989) Spatial pattern and ecological analysis. Vegetatio 80:107–138. doi:10.1007/BF00048036

    Article  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology. Elsevier, Oxford

    Google Scholar 

  • Leite PF (2002) Contribuição ao conhecimento fitoecológico do Sul do Brasil. Cienc Ambient 24:51–73

    Google Scholar 

  • Leite PF, Klein RM (1990) Vegetação. In: Mesquita OV (ed) Geografia do brasil: região sul. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, pp 113–150

    Google Scholar 

  • Li Q, Yang X, Soininen J, Chu CJ, Zhang JQ, Yu KL, Wang G (2011) Relative importance of spatial processes and environmental factors in shaping alpine meadow communities. J Plant Ecol 4:249–258. doi:10.1093/jpe/rtq034

    Article  Google Scholar 

  • López-Martínez JO, Hernández-Stefanoni JL, Dupuy JM, Meave JA (2013) Partitioning the variation of woody plant β-diversity in a landscape of secondary tropical dry forests across spatial scales. J Veg Sci 24:33–45. doi:10.1111/j.1654-1103.2012.01446.x

    Article  Google Scholar 

  • Maack R (1947) Breves notícias sobre a geologia do Paraná e Santa Catarina. Arq Biol Tec 2:63–154. doi:10.1590/S1516-89132001000500010

    Google Scholar 

  • Marques MCM, Swaine MD, Liebsch D (2011) Diversity distribution and floristic differentiation of the coastal lowland vegetation: implications for the conservation of the Brazilian Atlantic forest. Biodivers Conserv 20:153–168. doi:10.1007/s10531-010-9952-4

    Article  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM, Gleneden Beach

    Google Scholar 

  • McCune B, Mefford MJ (2011) PC-ORD—multivariate analysis of ecological data, version 6.0. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Meynard CN, Lavergne S, Boulangeat I, Garraud L, Van Es J, Mouquet N, Thuiller W (2013) Disentangling the drivers of metacommunity structure across spatial scales. J Biogeogr 40:1560–1571. doi:10.1111/jbi.12116

    Article  PubMed Central  PubMed  Google Scholar 

  • Mittermeier RA, Gil PR, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Fonseca GAB (2004) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. Conservation International, Washington

    Google Scholar 

  • Mizusaki AMP, Thomaz-Filho AO (2004) Magmatismo pós-paleozóico no Brasil. In: Mantesso-Neto V, Bartorelli A, Carneiro CDR, Brito Neves BB (eds) Geologia do continente sul-americano: evolução da obra de Fernando Flávio Marques de Almeida. Becca, São Paulo, pp 281–291

    Google Scholar 

  • Monteiro MA (2001) Caracterização climática do estado de Santa Catarina: uma abordagem dos principais sistemas atmosféricos que atuam durante o ano. Geosul 16:69–78

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  • Negrelle RRB (2002) The Atlantic forest in the Volta Velha Reserve: a tropical rain forest site outside the tropics. Biodivers Conserv 11:887–919. doi:10.1023/A:1015322414513

    Article  Google Scholar 

  • Nery JT, Vargas WM, Martins MLOF (1996) Caracterização da precipitação no estado do Paraná. Rev Brasil Agrometeorol 4:81–89. doi:10.4025/bolgeogr.v19i1.12055

    Google Scholar 

  • Nettesheim FC, Damasceno ER, Sylvestre LS (2014) Different slopes of a mountain can determine the structure of ferns and lycophytes communities in a tropical forest of Brazil. An Acad Bras Ciênc 86:199–210. doi:10.1590/0001-3765201495912

    Article  PubMed  Google Scholar 

  • Nimer E (1989) Climatologia do Brasil. IBGE Departamento de Recursos Naturais e Estudos Ambientais, Rio de Janeiro

    Google Scholar 

  • Oliveira-Filho AT (2009) Classificação das fitofisionomias da América do Sul cisandina tropical e subtropical: proposta de um novo sistema—prático e flexível—ou uma injeção a mais de caos? Rodriguésia 60:237–258

    Google Scholar 

  • Oliveira-Filho AT (2014) NeoTropTree, Flora arbórea da Região Neotropical: um banco de dados envolvendo biogeografia, diversidade e conservação. Universidade Federal de Minas Gerais. http://www.icb.ufmg.br/treeatlan. Accessed 15 Aug 2014

  • Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic forests in south-eastern Brazil, and the influence of climate. Biotropica 32:793–810. doi:10.1111/j.1744-7429.2000.tb00619.x

    Article  Google Scholar 

  • Oliveira-Filho AT, Jarenkow JA, Rodal MJN (2006) Floristic relationships of seasonally dry forests of eastern South America based on tree species distribution patterns. In: Pennington RT, Lewis GP, Ratter JA (eds) Neotropical savannas and dry forests: plant diversity, biogeography, and conservation. CRC Press, Oxford, pp 159–192

    Google Scholar 

  • Oliveira-Filho AT, Budke JC, Jarenkow JA, Eisenlohr PV, Neves DRM (2013) Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests. J Plant Ecol 6:1–23. doi:10.1093/jpe/rtt058

    Google Scholar 

  • Patrício MS, Gonçalves AC, David JS (1998) Intercepção horizontal do nevoeiro pela vegetação. Silv Lusit 6:247–256

    Google Scholar 

  • Peres-Neto PR, Legendre P (2010) Estimating and controlling for spatial structure in the study of ecological communities. Glob Ecol Biogeogr 19:174–184. doi:10.1111/j.1466-8238.2009.00506.x

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • Peterson RH, Gale D (1991) Fish species associations in riffle habitat of streams of varying size and acidity in New Brunswick and Nova Scotia. J Fish Biol 38:859–871. doi:10.1111/j.1095-8649.1991.tb03626.x

    Article  Google Scholar 

  • Petri S, Fulfaro VJ (1983) Geologia do Brasil. EDUSP, São Paulo

    Google Scholar 

  • Pyke CR, Condit R, Aguilar S, Lao S (2001) Floristic composition across a climatic gradient in a neotropical lowland forest. J Veg Sci 12:553–566. doi:10.2307/3237007

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rambo B (1980) A mata pluvial do Alto Uruguai. Roessléria 3:101–139

    Google Scholar 

  • Ramesh BR, Venugopal PD, Pélissier R, Patil SV, Swaminath MH, Couteron P (2010) Mesoscale patterns in the floristic composition of forests in the central Western Ghats of Karnataka, India. Biotropica 42:435–443. doi:10.1111/j.1744-7429.2009.00621.x

    Article  Google Scholar 

  • Rangel TF, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33:46–50. doi:10.1111/j.1600-0587.2009.06299.x

    Article  Google Scholar 

  • Roderjan CV, Galvão F, Kuniyoshi YS et al (2002) As unidades fitogeográficas do Estado do Paraná. Cienc Ambient 24:75–92

    Google Scholar 

  • Rosemback R, Ferreira NJ, Shimabukuro YE, Conforte JC (2010) Análise da dinâmica da cobertura vegetal na região sul do Brasil a partir de dados MODIS/TERRA. Rev Bras Cartogr 2:401–406

    Google Scholar 

  • Scarano FR (2002) Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic rainforest. Ann Bot 90:517–524. doi:10.1093/aob/mcf189

    Article  PubMed Central  PubMed  Google Scholar 

  • Shepherd GJ (2010) Fitopac 2.1.2.85. Manual do Usuário. Universidade Estadual de Campinas, Campinas

    Google Scholar 

  • Smith RA (1971) The effect of unequal group size on Tukey’s HSD procedure. Psychometrika 36:31–34

    Article  Google Scholar 

  • Valente ASM (2011) Sub-regiões fitogeográficas da Floresta Atlântica entre as bacias dos rios São Francisco e Uruguai baseadas na análise dos padrões de distribuição espacial da flora arbórea e do clima (Ph.D. Thesis). Universidade Federal de Lavras, Lavras

  • Vibrans AC, Sevegnani L, Lingner DV, Gasper AL, Sabbagh S (2010) The Floristic and Forest Inventory of Santa Catarina State (IFFSC): methodological and operational aspects. Braz J For Res 30:291–302. doi:10.4336/2010.pfb.64.291

    Google Scholar 

  • Vibrans AC, Moser P, Lingner DV, Gasper AL (2012) Metodologia do Inventário Florístico Florestal de Santa Catarina. In: Vibrans AC, Sevegnani L, Gasper AL, Lingner DV (eds) Diversidade e conservação dos remanescentes florestais. Inventário Florístico Florestal de Santa Catarina, Blumenau, pp 31–62

    Google Scholar 

  • Vibrans AC, McRoberts RE, Moser P, Nicoletti A (2013) Using satellite image-based maps and ground inventory data to estimate the area of the remaining Atlantic forest in the Brazilian state of Santa Catarina. Remote Sens Environ 130:87–95. doi:10.1016/j.rse.2012.10.023

    Article  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Ann Rev Ecol Syst 33:475–505. doi:10.1146/annurev.ecolsys.33.010802.150448

    Article  Google Scholar 

  • Wyatt JL, Silman MR (2004) Distance-dependence in two Amazonian palms: effects of spatial and temporal variation in seed predator communities. Oecologia 140:26–35. doi:10.1007/s00442-004-1554-y

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank CAPES for the Master’s scholarship granted to the first author, CNPq for the grants awarded to the second, third and fourth authors, and FAPESC for supporting the IFFSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro V. Eisenlohr.

Additional information

Communicated by Joseph Paul Messina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezende, V.L., Eisenlohr, P.V., Vibrans, A.C. et al. Humidity, low temperature extremes, and space influence floristic variation across an insightful gradient in the Subtropical Atlantic Forest. Plant Ecol 216, 759–774 (2015). https://doi.org/10.1007/s11258-015-0465-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-015-0465-9

Keywords

Navigation