Skip to main content

Advertisement

Log in

Environmental control of species richness and composition in upland grasslands of the southern Czech Republic

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Biodiversity of Central European semi-natural upland grasslands is steadily declining, due to either abandonment or management intensification. Although there are several descriptive overviews of their vegetation, quantitative information on the relationship between their species richness or composition and environmental factors is still scarce. We sampled upland grasslands in the southern part of the Czech Republic in order to determine the main soil variables affecting diversity of their vegetation. The relationships between species richness and environmental variables were tested using correlation analysis and regression trees, and the relationship between species composition and environment using detrended correspondence analysis and canonical correspondence analysis. Of soil variables, species richness of vascular plants was most strongly affected by phosphorus and, less so, by potassium and organic matter, with higher richness in habitats with less phosphorus, potassium, and organic matter. Grasslands on soils with pH < 4.6 were species-poor, but across the rest of the pH range richness was independent of pH. Most bryophyte species were present on low-pH soils poor in calcium and phosphorus and on organic soils. Red List species were best represented in fen meadows on organic soils with high calcium and low pH. Major determinants of floristic composition were soil moisture, nutrient availability, and soil pH. This study shows that conservation management of these grasslands should focus on reducing phosphorus input and protecting groundwater discharge areas from drainage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen SE (1989) Chemical analysis of ecological materials. Blackwell, Oxford

    Google Scholar 

  • Amador JA, Jones RD (1993) Nutrient limitations on microbial respiration in peat soils with different total phosphorus content. Soil Biol Biochem 25:793–801

    Article  CAS  Google Scholar 

  • Aude E, Ejrnæs R (2005) Bryophyte colonisation in experimental microcosms: the role of nutrients, defoliation and vascular vegetation. Oikos 109:323–330

    Article  Google Scholar 

  • Balátová-Tuláčková E (2003) Společenstva zamokřených luk řádu Molinietalia v jižní části Českomoravské vrchoviny. Vlastiv Sborn Vysočiny 16:63–94

    Google Scholar 

  • Bergamini A, Pauli D, Peintinger M et al (2001) Relationships between productivity, number of shoots and number of species in bryophytes and vascular plants. J Ecol 89:920–929

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA et al (1984) Classification and regression trees. Wadsworth International Group, Belmont

    Google Scholar 

  • Chytrý M (ed) (2007) Vegetace České republiky 1. Travinná a keříčková vegetace/Vegetation of the Czech Republic 1. Grassland and heathland vegetation. Academia, Praha

  • Chytrý M (ed) (2011) Vegetace České republiky 3. Vodní a mokřadní vegetace/Vegetation of the Czech Republic 3. Aquatic and wetland vegetation. Academia, Praha

  • Chytrý M, Tichý L, Roleček J (2003) Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient. Folia Geobot 38:429–442

    Article  Google Scholar 

  • Chytrý M, Danihelka J, Ermakov N et al (2007) Plant species richness in continental southern Siberia: effects of pH and climate in the context of the species pool hypothesis. Global Ecol Biogeogr 16:668–678

    Article  Google Scholar 

  • Chytrý M, Hejcman M, Hennekens SM et al (2009) Changes in vegetation types and Ellenberg indicator values after 65 years of fertilizer application in the Rengen Grassland Experiment, Germany. Appl Veg Sci 12:167–176

    Article  Google Scholar 

  • Cousins SAO, Lindborg R, Mattsson S (2009) Land use history and site location are more important for grassland species richness than local soil properties. Nord J Bot 27:483–489

    Article  Google Scholar 

  • Crawley MJ, Johnston AE, Silvertown J et al (2005) Determinants of species richness in the Park Grass Experiment. Am Nat 165:179–192

    Article  PubMed  CAS  Google Scholar 

  • Critchley CNR, Chambers BJ, Fowbert JA et al (2002) Association between lowland grassland plant communities and soil properties. Biol Conserv 105:199–215

    Article  Google Scholar 

  • Ejrnæs R, Bruun HH (2000) Gradient analysis of dry grassland vegetation in Denmark. J Veg Sci 11:573–584

    Article  Google Scholar 

  • Elberse WT, van den Bergh JP, Dirven JGP (1983) Effects of use and mineral supply on the botanical composition and yield of old grassland on heavy clay soil. Neth J Agr Sci 31:62–88

    Google Scholar 

  • Ellenberg H (1988) Vegetation ecology of Central Europe. Cambridge University Press, Cambridge

    Google Scholar 

  • Ellenberg H, Weber HE, Düll R et al (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:1–258

    Google Scholar 

  • Ewald J (2003) The calcareous riddle: why are there so many calciphilous species in the Central European flora? Folia Geobot 38:357–366

    Article  Google Scholar 

  • Gould WA, Walker MD (1999) Plant communities and landscape diversity along a Canadian Arctic river. J Veg Sci 10:537–548

    Article  Google Scholar 

  • Grevilliot F, Krebs L, Muller S (1998) Comparative importance and interference of hydrological conditions and soil nutrient gradients in floristic biodiversity in flood meadows. Biodivers Conserv 7:1495–1520

    Article  Google Scholar 

  • Güsewell S (2004) N : P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Article  Google Scholar 

  • Hájek M, Hájková P (2004) Environmental determinants of variation in Czech Calthion wet meadows: a synthesis of phytosociological data. Phytocoenologia 34:33–54

    Article  Google Scholar 

  • Hájková P, Hájek M (2004) Bryophyte and vascular plant responses to base-richness and water level gradients in Western Carpathian Sphagnum-rich mires. Folia Geobot 39:335–351

    Article  Google Scholar 

  • Havlová M, Chytrý M, Tichý L (2004) Diversity of hay meadows in the Czech Republic: major types and environmental gradients. Phytocoenologia 34:551–567

    Article  Google Scholar 

  • Hejcman M, Klaudisová M, Schellberg J et al (2007a) The Rengen Grassland Experiment: Plant species composition after 64 years of fertilizer application. Agr Ecosyst Environ 122:259–266

    Article  Google Scholar 

  • Hejcman M, Klaudisová M, Štursa J et al (2007b) Revisiting a 37 years abandoned fertilizer experiment on Nardus grassland in the Czech Republic. Agr Ecosyst Environ 118:231–236

    Article  Google Scholar 

  • Hejcman M, Schellberg J, Pavlů V (2010) Long-term effects of cutting frequency and liming on soil chemical properties, biomass production and plant species composition of Lolio-Cynosuretum grassland after the cessation of fertilizer application. Appl Veg Sci 13:257–269

    Google Scholar 

  • Holub J, Procházka F (2000) Red List of vascular plants of the Czech Republic—2000. Preslia 72:187–230

    Google Scholar 

  • Janišová M, Hájková P, Hegedüšová K et al (2007) Travinnobylinná vegetácia Slovenska – elektronický expertný systém na identifikáciu syntaxónov. Botanický ústav SAV, Bratislava

    Google Scholar 

  • Janssens F, Peeters A, Tallowin JRB et al (1998) Relationship between soil chemical factors and grassland diversity. Plant Soil 202:69–78

    Article  CAS  Google Scholar 

  • Kalusová V, Le Duc MG, Gilbert JC et al (2009) Determining the important environmental variables controlling plant species community composition in mesotrophic grasslands in Great Britain. Appl Veg Sci 12:459–471

    Article  Google Scholar 

  • Klimek S, Kemmermann AR, Hofmann M et al (2007) Plant species richness and composition in managed grasslands: the relative importance of field management and environmental factors. Biol Conserv 134:559–570

    Article  Google Scholar 

  • Köhler B, Ryser P, Güsewell S et al (2001) Nutrient availability and limitation in traditionally mown and in abandoned limestone grasslands: a bioassay experiment. Plant Soil 230:323–332

    Article  Google Scholar 

  • Kopec M, Zarzycki J, Gondek K (2010) Species diversity of submontane grasslands: effects of topographic and soil factors. Pol J Ecol 58:285–295

    CAS  Google Scholar 

  • Královec J, Pocová L, Jonášová M et al (2009) Spontaneous recovery of an intensively used grassland after cessation of fertilizing. Appl Veg Sci 12:391–397

    Article  Google Scholar 

  • Kubát K, Hrouda L, Chrtek J Jr et al (eds) (2002) Klíč ke květeně České republiky. Academia, Praha

    Google Scholar 

  • Kučera T, Váňa J (2003) Check- and Red List of bryophytes of the Czech Republic (2003). Preslia 75:193–222

    Google Scholar 

  • Linusson AC, Berlin GAI, Olsson EGA (1998) Reduced community diversity in seminatural meadows in southern Sweden, 1965–1990. Plant Ecol 136:77–94

    Article  Google Scholar 

  • Löbel S, Dengler J, Hobohm C (2006) Species richness of vascular plants, bryophytes and lichens in dry grasslands: The effects of environment, landscape structure and competition. Folia Geobot 41:377–393

    Article  Google Scholar 

  • Marrs RH (1993) Soil fertility and nature conservation in Europe: theoretical considerations and practical management solutions. Adv Ecol Res 24:241–300

    Article  CAS  Google Scholar 

  • McCrea AR, Trueman IC, Fullen MA et al (2001) Relationships between soil characteristics and species richness in two botanically heterogeneous created meadows in the urban English West Midlands. Biol Conserv 97:171–180

    Article  Google Scholar 

  • McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606

    Article  Google Scholar 

  • Michalcová D, Gilbert JC, Lawson CS et al (2011) The combined effect of waterlogging, extractable P and soil pH on α-diversity: a case study on mesotrophic grasslands in the UK. Plant Ecol 212:879–888

    Article  Google Scholar 

  • Mountford JO, Lakhani KH, Holland RJ (1996) Reversion of grassland vegetation following the cessation of fertilizer application. J Veg Sci 7:219–228

    Article  Google Scholar 

  • Mucina L, Grabherr G, Ellmauer T (eds) (1993) Die Pflanzengesellschaften Österreichs Teil I. Anthropogene Vegetation. Gustav Fischer Verlag, Jena Stuttgart New York

    Google Scholar 

  • Oberdorfer E (ed) (1993a) Süddeutsche Pflanzengesellschaften. Teil II. Sand- und Trockenrasen, Heide- und Borstgras-Gesellschaften, alpine Magerrasen, Saum-Gesellschaften, Schlag- und Hochstauden-Fluren. Gustav Fischer Verlag, Jena Stuttgart New York

  • Oberdorfer E (ed) (1993b) Süddeutsche Pflanzengesellschaften Teil III. Wirtschaftswiesen und Unkrautgesellschaften. Gustav Fischer Verlag, Jena Stuttgart New York

    Google Scholar 

  • Oomes MJM (1990) Changes in dry matter and nutrient yields during the restoration of species-rich grasslands. J Veg Sci 1:333–338

    Article  Google Scholar 

  • Pärtel M (2002) Local plant diversity patterns and evolutionary history at the regional scale. Ecology 83:2361–2366

    Google Scholar 

  • Pärtel M, Helm A, Ingerpuu N et al (2004) Conservation of Northern European plant diversity: the correspondence with soil pH. Biol Conserv 120:525–531

    Article  Google Scholar 

  • Prévosto B, Kuiters L, Bernhardt-Römermann M et al (2011) Impacts of land abandonment on vegetation: successional pathways in European habitats. Folia Geobot 46:303–325

    Article  Google Scholar 

  • Roem WJ, Berendse F (2000) Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities. Biol Conserv 92:151–161

    Article  Google Scholar 

  • Růžička I (1987) Výsledky záchranného výzkumu ohrožené květeny mizejících rašelinišť a rašelinných luk na Jihlavsku. Vlastiv Sborn Vysočiny 8:153–192

    Google Scholar 

  • Rybníček K (1974) Die Vegetation der Moore im südlichen Teil der Böhmisch-Mährischen Höhe. Academia, Praha

    Google Scholar 

  • Rychnovská M (ed) (1993) Structure and functioning of seminatural meadows. Elsevier, Amsterdam

    Google Scholar 

  • Schaffers AP, Vesseur MC, Sýkora KV (1998) Effects of delayed hay removal on the nutrient balance of roadside plant communities. J Appl Ecol 35:349–364

    Article  Google Scholar 

  • Schuster B, Diekmann M (2003) Changes in species density along the soil pH gradient – evidence from German plant communities. Folia Geobot 38:367–379

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide. Software for Canonical Community Ordination (version 4.5). Biometris, Wageningen České Budějovice

  • Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453

    Article  Google Scholar 

  • Tolasz R (ed) (2007) Atlas podnebí Česka/Climate atlas of Czechia. ČHMÚ & UP, Praha Olomouc

    Google Scholar 

  • Tyler G (2003) Some ecophysiological and historical approaches to species richness and calcicole/calcifuge behaviour – contribution to a debate. Folia Geobot 38:419–428

    Article  Google Scholar 

  • van Duren IC, Pegtel DM, Aerts BA et al (1997) Nutrient supply in undrained and drained Calthion meadows. J Veg Sci 8:829–838

    Article  Google Scholar 

  • Virtanen R, Johnston AE, Crawley MJ et al (2000) Bryophyte biomass and species richness on the Park Grass Experiment, Rothamsted, UK. Plant Ecol 151:129–141

    Article  Google Scholar 

  • Wassen MJ, Olde Venterink H, Lapshina ED et al (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550

    Article  PubMed  CAS  Google Scholar 

  • Westhoff V, van der Maarel E (1978) The Braun-Blanquet approach. In: Whittaker RH (ed) Classification of plant communities. W. Junk, The Hague, pp 289–399

    Google Scholar 

  • Willems JH, Peet RK, Bik L (1993) Changes in chalk-grassland structure and species richness resulting from selective nutrient additions. J Veg Sci 4:203–212

    Article  Google Scholar 

  • Zelený D, Schaffers AP (2012) Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses. J Veg Sci. doi:10.1111/j.1654-1103.2011.01366.x

    Google Scholar 

  • Zelnik I, Čarni A (2008) Distribution of plant communities, ecological strategy types and diversity along a moisture gradient. Commun Ecol 9:1–9

    Article  Google Scholar 

  • Zinko U, Dynesius M, Nilsson C et al (2006) The role of soil pH in linking groundwater flow and plant species density in boreal forest landscapes. Ecography 29:515–524

    Article  Google Scholar 

Download references

Acknowledgments

We thank Rob Marrs for various advice and for making laboratory analyses possible during the Erasmus stay of K.M. in the Applied Vegetation Dynamics Laboratory of the University of Liverpool, and David Zelený for calculation of the modified permutation tests for Ellenberg Indicator Values. This study was funded by the Ministry of Education of the Czech Republic (MSM0021622416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Merunková.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 1646 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merunková, K., Chytrý, M. Environmental control of species richness and composition in upland grasslands of the southern Czech Republic. Plant Ecol 213, 591–602 (2012). https://doi.org/10.1007/s11258-012-0024-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-012-0024-6

Keywords

Navigation