Skip to main content

Advertisement

Log in

Total, free, and protein-bound thiols in plasma of peritoneal dialysis and predialysis patients

  • Nephrology – Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Thiol compounds such as glutathione, homocysteine, and cysteinyl-glycine are the natural reservoir of reductive capacity of the cells. Chronic renal failure is accompanied by disturbances in redox status of plasma thiols. The aim of the present study was to compare the changes in concentrations of different forms of thiols in plasma of terminal renal failure patients, nondialyzed and on peritoneal dialysis. Total concentrations of different redox forms of thiols were determined by high performance liquid chromatography. We observed that total concentration of glutathione in terminal renal failure patients decreased and total concentration of the remaining thiols in these patients significantly increased. Continuous ambulatory peritoneal dialysis had the following features in comparison with nondialyzed patients: (1) glutathione and cysteine concentration was restored and (2) free fraction of thiols rose, while protein-bound fraction dropped (except for homocysteine). Continuous ambulatory peritoneal dialysis corrects total concentration of glutathione and cysteine, in comparison with nondialyzed patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kemp M, Go YM, Jones DP (2008) Nonequilibrium thermodynamics of thiol/disulfide redox system: a perspective on redox system biology. Free Radic Biol Med 44:921–937

    Article  PubMed  CAS  Google Scholar 

  2. Ueland PM, Mansoor MA, Guttormsen AB, Müller F, Aukrust P, Refsum H et al (1996) Reduced, oxidized and protein-bound forms of homocysteine and other aminothiols in plasma comprise the redox thiol status: a possible element of the extracellular antioxidant defence system. J Nutr 126:1281S–1284S

    PubMed  CAS  Google Scholar 

  3. Nkabyo YS, Gu LH, Jones DP, Ziegler TR (2006) Thiol/disulfide redox status is oxidized in plasma and small intestinal and colonic mucosa of rats with inadequate sulfur amino acid intake. J Nutr 136:1242–1248

    PubMed  CAS  Google Scholar 

  4. Himmelfarb J, McMonagle E, McMenamin E (2000) Plasma protein thiol oxidation and carbonyl formation in chronic renal failure. Kidney Int 58:2571–2578

    Article  PubMed  CAS  Google Scholar 

  5. Wlodek PJ, Smolenski OB, Chwatko G, Iciek MB, Miłkowski A, Bald E et al (2006) Disruption of thiol homeostasis in plasma of terminal renal failure patients. Clin Chim Acta 366:137–145

    Article  PubMed  CAS  Google Scholar 

  6. Bald E, Glowacki R (2001) 2-Chloro-1-methylquinolinium tetrafluoroborate as an effective and thiol specific UV-tagging reagent for liquid chromatography. J Liq Cromat Rel Technol 24:1323–1339

    Article  CAS  Google Scholar 

  7. Bald E, Chwatko G, Glowacki R, Kusmierek K (2004) Analysis of plasma thiols by high-performance liquid chromatography with ultraviolet detection. J Chromatogr A 1032:109–115

    Article  PubMed  CAS  Google Scholar 

  8. Garibotto G, Sofia A, Saffioti S, Russo R, Deferrari G, Rossi D et al (2003) Interorgan exchange of aminothiols in humans. Am J Physio Endocrinol Metab 284:E757–E763

    CAS  Google Scholar 

  9. Chuang CK, Lin SP, Chen HH, Chen YC, Wang TJ, Shieh WH et al (2006) Plasma free amino acids and their metabolites in Taiwanese patients on hemodialysis and continuous ambulatory peritoneal dialysis. Clin Chim Acta 364:209–216

    Article  PubMed  CAS  Google Scholar 

  10. Alhamadani MS (2005) Impairment of glutathione biosynthetic pathway in uraemia and dialysis. Nephrol Dial Transplant 20:124–128

    Article  Google Scholar 

  11. Harman LS, Mottley C, Mason RP (1984) Free radical metabolites of l-cysteine oxidation. J Biol Chem 259:5606–5611

    PubMed  CAS  Google Scholar 

  12. Niwa T (2007) Protein glutationylation and oxidative stress. J Chromat 855:59–65

    Article  CAS  Google Scholar 

  13. Perna AF, Acanfora F, Satta E, Lombardi C, Ingrosso D, De Santo NG (2004) Hyperhomocysteinemia and cardiovascular disease in uremia: the newest evidence in epidemiology and mechanism of action. Semin Nephrol 24:426–430

    Article  PubMed  CAS  Google Scholar 

  14. Muniz P, Saez P, Iradi A, Vina J, Oliva MR, Saez GT (2001) Differences between cysteine and homocysteine in the induction of deoxyribose degradation and DNA damage. Free Rad Biol Med 30:354–362

    Article  PubMed  CAS  Google Scholar 

  15. Włodek L, Iciek M (2003) Protein S-thiolation as an antioxidative and regulatory mechanism. Postępy Biochem 49:77–84

    PubMed  Google Scholar 

  16. Lash LH, Jones DP (1985) Distribution of oxidized and reduced form of glutathione and cysteine in rat plasma. Arch Biochem Biophys 240:583–592

    Article  PubMed  CAS  Google Scholar 

  17. Carter D, Ho J (1994) Structure of serum albumin. Adv Protein Chem 45:153–203

    Article  PubMed  CAS  Google Scholar 

  18. Sengupta S, Chen H, Togawa T, DiBello PM, Majors AK, Budy B et al (2001) Albumin thiolate anion is an intermediate in the formation of albumin-S-S-homocysteine. J Biol Chem 276:30111–30117

    Article  PubMed  CAS  Google Scholar 

  19. Gilbert HF (1990) Molecular and cellular aspects of thiol/disulfide exchange. Adv Enzymol 63:69–72

    PubMed  CAS  Google Scholar 

  20. Hogg N (1999) The effect of cyst(e)ine on the auto-oxidation of homocysteine. Free Rad Biol Med 27:28–33

    Article  PubMed  CAS  Google Scholar 

  21. Schnitzer JE, Oh P (1994) Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J Biol Chem 269:6072–6082

    PubMed  CAS  Google Scholar 

  22. Tiruppathi C, Finnegan A, Malik AB (1996) Isolation and characterization of a cell surface albumin-binding protein from vascular endothelial cells. Proc Natl Acad Sci USA 93:250–254

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kowalczyk-Pachel Danuta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Przemysław, W., Piotr, K., Grażyna, C. et al. Total, free, and protein-bound thiols in plasma of peritoneal dialysis and predialysis patients. Int Urol Nephrol 43, 1201–1209 (2011). https://doi.org/10.1007/s11255-011-9905-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-011-9905-1

Keywords

Navigation