Skip to main content

Advertisement

Log in

Microvessel density and regulators of angiogenesis in malignant and nonmalignant prostate tissue

  • Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the relationship between microvessel density (MVD), positive and negative angiogenic factors, and established prognostic factors in prostate cancer (PC), and, to clarify the effect of angiogenic factors to angiogenesis. The vascularization of neoplastic, non-neoplastic prostate tissue was determined by CD34 immunostaining. Angiogenetic mediators VEGF, bFGF, TSP-1, and p53 were studied by immunohistochemistry. Neovascularization and p53, VEGF, and TSP-1 expressions of tumorous tissue were higher than non-tumorous tissue.The bFGF expression in these tissues was not different.The p53 expression was not correlated with the expressions of VEGF, bFGF, and TSP-1 in PC. Our results demonstrate a significant increase in MVD, VEGF, TSP-1, and p53 expressions in prostate tumorigenesis. The pretreatment sPSA was the only parameter demonstrating significant correlation with tumor grade and may have a value in the prediction of aggressive tumor behavior in PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Folkman J, Watson K, Ingber D, et al. (1989) Introduction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61

    Article  PubMed  CAS  Google Scholar 

  2. Weidner N, Carroll PR, Flax J, et al. (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143:401–409

    PubMed  CAS  Google Scholar 

  3. Tuxhorn JA, Ayala GE, Rowley DR (2001) Reactive stroma in prostate cancer progression. J Urol 166:2472–2483

    Article  PubMed  CAS  Google Scholar 

  4. Doll JA, Reiher FK, Crawford SE, et al. (2001) Trombospondin-1, vascular endothelial growth factor and fibroblast growth factor-2 are key functional regulators of angiogenesis in the prostate. Prostate 49:293–305

    Article  PubMed  CAS  Google Scholar 

  5. Baltaci S, Orhan D, Gogus C, et al. (2003) Thrombospondin-1, vascular endothelial growth factor expression and microvessel density in renal cell carcinoma and their relationship with multifocality. Eur Urol 44: 76–81, discussion 81

    Article  PubMed  CAS  Google Scholar 

  6. Yaman O, Ozdiler E, Orhan D, et al. (1997) Immunohistochemical determination of p53 protein in prostatic cancer and prostatic intraepithelial neoplasms. Urol Int 58: 199–202

    PubMed  CAS  Google Scholar 

  7. Shih SC, Robinson GS, Perruzzi CA, et al. (2002) Molecular profiling of angiogenesis markers. Am J Pathol 161:35–41

    PubMed  CAS  Google Scholar 

  8. Good DJ, Polverini PJ, Rastinejad F, et al. (1990) A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Science 87:6624–6628

    CAS  Google Scholar 

  9. Iruela-Arispe ML, Bornstein P, Sage H (1991) Thrombospondin exerts an antiangiogenic effect on cord formation by endothelial cells in vitro. Proc Natl Acad Sci USA 88:5026–5030

    Article  PubMed  CAS  Google Scholar 

  10. Tolsma SS, Volpert OV, Good DJ, et al. (1993) Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol 122:497–511

    Article  PubMed  CAS  Google Scholar 

  11. Pedersen KV, Herder A (1993) Radical retropubic prostatectomy for localised prostatic carcinoma: A clinical and pathological study of 201 cases. Scand J Urol Nephrol 27:219–224

    Article  PubMed  CAS  Google Scholar 

  12. Moreno JG, Ahlering TE (1992) Late local complications after definitive radiotherapy for prostatic adenocarcinoma. J Urol 147(3pt 2):926–928

    PubMed  CAS  Google Scholar 

  13. Gleason DF, Mellinger GT (1974) Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol 111:58–64

    PubMed  CAS  Google Scholar 

  14. Oesterling JE (1991) Prostate specific antigen: a critical assessment of the most useful tumor marker for adenocarcinoma of the prostate. J Urol 145:907–923

    PubMed  CAS  Google Scholar 

  15. Condon MS (2005) The role of the stromal microenvironment in prostate cancer. Sem Cancer Biol 15:132–137

    Article  Google Scholar 

  16. Tuxhorn JA, McAlhany SJ, Dang TD, et al. (2002) Stromal cells promote angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft model. Cancer Res 62:3298–3307

    PubMed  CAS  Google Scholar 

  17. Cockerill GW, Gamble JR, Vadas MA (1995) Angiogenesis: models and modulators. Int Rev Cytol 159:113–160

    Article  PubMed  CAS  Google Scholar 

  18. Bettencourt MC, Bauer JJ, Sesterhenn IA, et al. (1998) CD34 immunohistochemical assessment of angiogenesis as a prognostic marker for prostate cancer recurrence after radical prostatectomy. J Urol 160:459–465

    Article  PubMed  CAS  Google Scholar 

  19. Bono AV, Celato N, Cova V, et al. (2002) Microvessel density in prostate carcinoma. Prostate Cancer 5:123–127

    Article  CAS  Google Scholar 

  20. Houck KA, Leung DW, Rowland AM, et al. (1992) Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 267:26031–26037

    PubMed  CAS  Google Scholar 

  21. Rak J, Filmus J, Finkenzeller G, et al. (1995) Oncogenes as inducers of tumor angiogenesis. Cancer Metastasis Rev 14:263–277

    Article  PubMed  CAS  Google Scholar 

  22. Walsh K, Sriprasad S, Hopster D, et al. (2002) Distribution of vascular endothelial growth factor (VEGF) in prostate disease. Prostate Cancer 5:119–122

    Article  CAS  Google Scholar 

  23. Mori H, Maki M, Oishi K, et al. (1990) Increased expression of genes for basic fibroblast growth factor and transforming growth factor type beta 2 in human benign prostatic hyperplasia. Prostate 16:71–80

    Article  PubMed  CAS  Google Scholar 

  24. Deshmukh N, Scotson J, Dodson AR, et al. (1997) Differential expression of acidic and basic fibroblast growth factors in benign prostatic hyperplasia identified by immunohistochemistry. Br J Urol 80:869–874

    PubMed  CAS  Google Scholar 

  25. Giri D, Ropiquet F, Ittmann M (1999) Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin Cancer Res 5:1063–1071

    PubMed  CAS  Google Scholar 

  26. Walsh, Sherwood RA, Dew TK, et al. (1999) Angiogenesis peptides in prostattic disease. Br J Urol Int 8:1081–1083

    Google Scholar 

  27. Trojan L, Thomas D, Knoll T, et al. (2004) Expression of VEGF, EGF and bFGF and their topographical relation to neovascularization in prostate cancer. Urol Res 32:97–103

    Article  PubMed  CAS  Google Scholar 

  28. Brown LF, Guidi AJ, Schnitt SJ, et al. (1999) Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin Cancer Res 5:1041–1056

    PubMed  CAS  Google Scholar 

  29. Nicosia RF, Tuszynski GP (1994) Matrix-bound thrombospondin promotes angiogenesis in vitro. J Cell Biol 124:183–193

    Article  PubMed  CAS  Google Scholar 

  30. Bleuel K, Popp S, Fusenig NE, et al. (1999) Tumor suppression in human skin carcinoma cells by chromosome 15 transfer or thrombospondin-1 overexpression through halted tumor vasculature. Proc Natl Acad Sci USA 96:2065–2070

    Article  PubMed  CAS  Google Scholar 

  31. Streit M, Velasco P, Brown LF, et al. (1999) Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the growth of human cutaneous squamous cell carcinomas. Am J Pathol 155:441–452

    PubMed  CAS  Google Scholar 

  32. Weinstat-Saslow DL, Zabrenetzky VS, VanHoutte K, et al. (1994) Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential and angiogenesis. Cancer Res 54:6504–6511

    PubMed  CAS  Google Scholar 

  33. Chen H, Herndon ME, Lawler J (2000) The cell biology of thrombospondin. Matrix Biol 19:597–614

    Article  PubMed  CAS  Google Scholar 

  34. Good DJ, Polverini PJ, Rastinejad F, et al. (1990) A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistiguishable from a fragment of thrombospondin. Proc. Natl Acad Sci USA 87:6624–6628

    Article  PubMed  CAS  Google Scholar 

  35. Rodriguez-Manzaneque JC, Lane TF, Ortega MA, et al. (2001) Thrombospondin-1 supresses tumor growth by a novel mechanism that includes blockade of matrix metalloproteinase-9 activation. Proc Natl Acad Sci USA 98:12485–12490

    Article  PubMed  CAS  Google Scholar 

  36. Taraboletti G, Morbidelli L, Donnini S, et al. (2000) The heparin binding 25 kDa fragment of thrombospondin-1 promotes angiogenesis and modulates gelatinase and TIMP-2 production in endothelial cells. FASEB J 14:1674–1676

    PubMed  CAS  Google Scholar 

  37. Trojan L, Thomas D, Knoll T, et al. (2004) Expression of pro-angiogenic growth factors VEGF, EGF and bFGF and their topographical relation to neovascularization in prostate cancer. Urol Res 32:97–103

    Article  PubMed  CAS  Google Scholar 

  38. Wight TN, Raugi GJ, Mumby SM, et al. (1985) Light miscroscopic immunolocation of thrombospondin in human tissues. J Histochem Cytochem 33:295–302

    PubMed  CAS  Google Scholar 

  39. Kallakury BV, Figge J, Ross JS, et al. (1994) Association of p53 immunoreactivity with high Gleason tumor grade in prostatic adenocarcinoma. Hum Pathol 25:92–97

    Article  PubMed  CAS  Google Scholar 

  40. Moul JW (1999) Angiogenesis, p53, bcl-2 and Ki-67 in the progression of prostate cancer after radical prostatectomy. Eur Urol 35:399–407

    Article  PubMed  CAS  Google Scholar 

  41. Dameron KM, Volpert OV, Tainsky MA, et al. (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265:1582–1584

    Article  PubMed  CAS  Google Scholar 

  42. Volpert OV, Dameron KM, Bouck N (1997) Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene 14:1495–1502

    Article  PubMed  CAS  Google Scholar 

  43. Kwak C, Jin RJ, Lee C, et al. (2002) Trombospondin-1, vascular endothelial growth factor expression and their relationship with p53 status in prostate cancer and benign prostatic hyperplasia. Br J Urol 8:303–309

    Google Scholar 

  44. Mukhopadhyay D, Tsiokas L, Sukhatme VP (1995) Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res 55:6161–6165

    PubMed  CAS  Google Scholar 

  45. Grossfeld GD, Ginsberg DA, Stein JP, et al. (1997) Thrombospondin-1 expression in bladder cancer: a association with p53 alterations, tumor angiogenesis and tumor progression. J Natl Cancer Inst 89:219–227

    Article  PubMed  CAS  Google Scholar 

  46. Royuela M, de Miguel MP, Ruiz A, et al. (2000) Interferon-gamma and its functional receptors overexpression in benign prostatic hyperplasia and prostatic carcinoma: parallelism with c-myc and p53 expression. Eur Cytokine Netw 11:119–127

    PubMed  CAS  Google Scholar 

  47. Lin DW, Noreboom JL, Blumenstein BA, et al. (1998) Serum percent free prostate-specific antigen in metastatic prostate cancer. Urology 52:366–371

    Article  PubMed  CAS  Google Scholar 

  48. Yu KK, Hawkins RA (2000) The prostate: diagnostic evaluation of metastatic disease. Radiol Clin North Am 38:139–157

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Supported by Ankara University Research Fund. 20040331–22390

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozden Tulunay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaygusuz, G., Tulunay, O., Baltaci, S. et al. Microvessel density and regulators of angiogenesis in malignant and nonmalignant prostate tissue. Int Urol Nephrol 39, 841–850 (2007). https://doi.org/10.1007/s11255-006-9144-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-006-9144-z

Keywords

Navigation