Skip to main content

Advertisement

Log in

The influence of garden flowers on pollinator visits to forest flowers: comparison of bumblebee habitat use between urban and natural areas

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

As garden plants in urbanized environments provide considerable diverse floral resources to pollinators, the availability of floral resources has changed as a consequence of increasing urbanization. Although pollinators often forage at different sites in response to spatiotemporal variations in floral resources, little is known about the differences in pollinator foraging between urban and nearby natural environments. We monitored the foraging patterns of bumblebees in open and forest habitats in two areas with and without urban gardens with respect to flowering phenology and the availability of floral resources in each habitat. Floral richness in the forest habitat decreased as the season progressed, with a peak in late spring to early summer, whereas floral resources in the open habitat increased late in the season. Thus, floral resources in the open habitat could compensate for seasonal declines in forest floral resources. In the urban area, which contained green gardens, floral richness in the open habitat was much greater than that in the forest habitat. This resulted in a relatively high density of bumblebees in the open habitat in the urban area compared with those in the natural area, which lacked green gardens. Visitation frequency of bumblebees to forest flowers decreased as the floral richness of the open habitat increased. These results suggest that although urban gardens are important foraging sites for pollinators, the high attractiveness of garden flowers reduces pollinator visits to wildflowers in nearby forests. This may result in reduced pollination of native flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe T, Kamo K (2003) Seasonal changes of floral frequency and composition of flower in two cool temperate secondary forests in Japan. For Ecol Manag 175:153–162

    Article  Google Scholar 

  • Ahrné K, Bengtsson J, Elmqvist T (2009) Bumble bees (Bombus spp) along a gradient of increasing urbanization. PLoS One 4:e5574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen-Wardell G, Bernhardt P, Bitner R, Burquez A, Buchmann S, Cane J, Cox PA, Dalton V, Feinsinger P, Ingram M, Inouye D, Jones CE, Kennedy K, Kevan P, Koopowitz H, Medellin R, Medellin-Morales S, Nabhan GP, Pavlik B, Tepedino V, Torchio P, Walker S (1998) The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv Biol 12:8–17

    Article  Google Scholar 

  • Baldock KC, Goddard MA, Hicks DM, Kunin WE, Mitschunas N, Osgathorpe LM, Potts SG, Robertson KM, Scott AV, Stone GN, Vaughan IP, Memmott J (2015) Where is the UK's pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc R Soc Lond Ser B Biol Sci 282:20142849

    Google Scholar 

  • Baude M, Kunin WE, Boatman ND, Conyers S, Davies N, Gillespie MA, Morton RD, Smart SM, Memmott J (2016) Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530:85–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beekman M, Ratnieks FLW (2000) Long-range foraging by the honey-bee, Apis Mellifera L. Funct Ecol 14:490–496

    Article  Google Scholar 

  • Burkle LA, Delphia CM, O'Neill KM, Gibson D (2017) A dual role for farmlands: food security and pollinator conservation. J Ecol 105:890–899

    Article  Google Scholar 

  • Carvell C, Roy DB, Smart SM, Pywell RF, Preston CD, Goulson D (2006) Declines in forage availability for bumblebees at a national scale. Biol Conserv 132:481–489

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fortel L, Henry M, Guilbaud L, Guirao AL, Kuhlmann M, Mouret H, Rollin O, Vaissiere BE (2014) Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS One 9:e104679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foster G, Bennett J, Sparks T (2016) An assessment of bumblebee (Bombus spp) land use and floral preference in UK gardens and allotments cultivated for food. Urban ecosystems 20:425–434

    Article  Google Scholar 

  • Frankie GW, Thorp RW, Schindler M, Hernandez J, Ertter B, Rizzardi M (2005) Ecological patterns of bees and their host ornamental flowers in two northern California cities. J Kans Entomol Soc 78:227–246

    Article  Google Scholar 

  • Ghazoul J (2006) Floral diversity and the facilitation of pollination. J Ecol 94:295–304

    Article  Google Scholar 

  • Goddard MA, Dougill AJ, Benton TG (2010) Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol Evol 25:90–98

    Article  PubMed  Google Scholar 

  • Goulson D (2010) Bumblebees: behaviour, ecology, and conservation. Oxford University Press, USA

    Book  Google Scholar 

  • Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumble bees. Annu Rev Entomol 53:191–208

    Article  CAS  PubMed  Google Scholar 

  • Hagen M, Kraemer M (2010) Agricultural surroundings support flower-visitor networks in an afrotropical rain forest. Biol Conserv 143:1654–1663

    Article  Google Scholar 

  • Hanley ME, Franco M, Dean CE, Franklin EL, Harris HR, Haynes AG, Rapson SR, Rowse G, Thomas KC, Waterhouse BR, Knight ME (2011) Increased bumblebee abundance along the margins of a mass flowering crop: evidence for pollinator spillover. Oikos 120:1618–1624

    Article  Google Scholar 

  • Harrison T, Winfree R, Evans K (2015) Urban drivers of plant-pollinator interactions. Funct Ecol 29:879–888

    Article  Google Scholar 

  • Heinrich B (1976) Flowering phenologies: bog, woodland, and disturbed habitats. Ecology 57:890–899

    Article  Google Scholar 

  • Hernandez JL, Frankie GW, Thorp RW (2009) Ecology of urban bees: a review of current knowledge and directions for future study. Cities and the Environment 2:3

    Article  Google Scholar 

  • Herrmann F, Westphal C, Moritz R, Steffan-Dewenter I (2007) Genetic diversity and mass resources promote colony size and forager densities of a social bee (Bombus pascuorum) in agricultural landscapes. Mol Ecol 16:1167–1178

    Article  CAS  PubMed  Google Scholar 

  • Holzschuh A, Dainese M, Gonzalez-Varo JP, Mudri-Stojnic S, Riedinger V, Rundlof M, Scheper J, Wickens JB, Wickens VJ, Bommarco R, Kleijn D, Potts SG, Roberts SP, Smith HG, Vila M, Vujic A, Steffan-Dewenter I (2016) Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecol Lett 19:1228–1236

    Article  PubMed  PubMed Central  Google Scholar 

  • Huelsmann M, von Wehrden H, Klein A-M, Leonhardt SD (2015) Plant diversity and composition compensate for negative effects of urbanization on foraging bumble bees. Apidologie 46:760–770

    Article  Google Scholar 

  • Inari N, Hiura T, Toda MJ, Kudo G (2012) Pollination linkage between canopy flowering, bumble bee abundance and seed production of understorey plants in a cool temperate forest. J Ecol 100:1534–1543

    Article  Google Scholar 

  • Ishii HS, Kadoya T, Kikuchi R, Suda S-I, Washitani I (2008) Habitat and flower resource partitioning by an exotic and three native bumble bees in Central Hokkaido, Japan. Biol Conserv 141:2597–2607

    Article  Google Scholar 

  • Kaluza BF, Wallace H, Heard TA, Klein AM, Leonhardt SD (2016) Urban gardens promote bee foraging over natural habitats and plantations. Ecol Evol 6:1304–1316

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaluza BF, Wallace HM, Heard TA, Minden V, Klein A, Leonhardt SD (2018) Social bees are fitter in more biodiverse environments. Sci Rep 8:12353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kato M, Matsumoto M, Kato T (1993) Flowering phenology and anthophilous insect community in the cool-temperate subalpine forests and meadows at mt. Kushigata in the central part of Japan. Contributions from the biological laboratory. Kyoto University 28:119–172

    Google Scholar 

  • Kearns C, Inouye D, Waser N (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29:83–112

    Article  Google Scholar 

  • Kells AR, Holland JM, Goulson D (2001) The value of uncropped field margins for foraging bumblebees. J Insect Conserv 5:283–291

    Article  Google Scholar 

  • Kovács-Hostyánszki A, Haenke S, Batáry P, Jauker B, Báldi A, Tscharntke T, Holzschuh A (2013) Contrasting effects of mass—flowering crops on bee pollination of hedge plants at different spatial and temporal scales. Ecol Appl 23:1938–1946

    Article  PubMed  Google Scholar 

  • Kruess A, Tscharntke T (2002) Grazing intensity and the diversity of grasshoppers, butterflies, and trap-nesting bees and wasps. Conserv Biol 16:1570–1580

    Article  Google Scholar 

  • Kudo G, Ida TY, Tani T (2008) Linkages between phenology, pollination, photosynthesis, and plant reproduction in deciduous forest understory plants. Ecology 89:321–331

    Article  PubMed  Google Scholar 

  • Lander TA, Bebber DP, Choy CT, Harris SA, Boshier DH (2011) The circe principle explains how resource-rich land can waylay pollinators in fragmented landscapes. Curr Biol 21:1302–1307

    Article  CAS  PubMed  Google Scholar 

  • Lázaro A, Totland Ø (2010) Local floral composition and the behaviour of pollinators: attraction to and foraging within experimental patches. Ecol Entomol 35:652–661

    Article  Google Scholar 

  • Luoto M, Rekolainen S, Aakkula J, Pykälä J (2003) Loss of plant species richness and habitat connectivity in grasslands associated with agricultural change in Finland. AMBIO J Hum Environ 32:447–452

    Article  Google Scholar 

  • Magrach A, Holzschuh A, Bartomeus I, Riedinger V, Roberts SPM, Rundlöf M, Ante V, Wickens JB, Wickens VJ, Bommarco R, González-Varo JP, Potts SG, Smith HG, Steffan-Dewenter I, Vilà M (2017) Plant-pollinator networks in semi-natural grasslands are resistant to the loss of pollinators during blooming of mass-flowering crops. Ecography 41:62–74

    Article  Google Scholar 

  • Matteson KC, Langellotto GA (2009) Bumble bee abundance in New York city community gardens: implications for urban agriculture. Cities and the Environment 2:5

    Article  Google Scholar 

  • McFrederick QS, LeBuhn G (2006) Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)? Biol Conserv 129:372–382

    Article  Google Scholar 

  • Montero-Castaño A, Vilà M (2016) Influence of the honeybee and trait similarity on the effect of a non-native plant on pollination and network rewiring. Funct Ecol 31:142–152

    Article  Google Scholar 

  • Montero-Castaño A, Ortiz-Sánchez FJ, Vilà M (2016) Mass flowering crops in a patchy agricultural landscape can reduce bee abundance in adjacent shrublands. Agric Ecosyst Environ 223:22–30

    Article  Google Scholar 

  • Nagamitsu T, S-a T, Ushirokita F, Konno Y (2012) Foraging habitats and floral resource use by colonies of long- and short-tongued bumble bee species in an agricultural landscape with Kabocha squash fields. Appl Entomol Zool 47:181–190

    Article  Google Scholar 

  • Normandin É, Vereecken NJ, Buddle CM, Fournier V (2017) Taxonomic and functional trait diversity of wild bees in different urban settings. PeerJ 5:e3051

    Article  PubMed  PubMed Central  Google Scholar 

  • Ockinger E, Smith HG (2007) Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes. J Appl Ecol 44:50–59

    Article  Google Scholar 

  • Parrish JAD, Bazzaz FA (1979) Difference in pollination niche relationships in early and late successional plant communities. Ecology 60:597–610

    Article  Google Scholar 

  • Potts S, Vulliamy B, Dafni A, Ne'eman G, Willmer P (2003) Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84:2628–2642

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria. URL http://www.R-project.Org/

  • Roulston TH, Goodell K (2011) The role of resources and risks in regulating wild bee populations. Annu Rev Entomol 56:293–312

    Article  CAS  PubMed  Google Scholar 

  • Saunders ME, Luck GW (2014) Spatial and temporal variation in pollinator community structure relative to a woodland-almond plantation edge. Agr Forest Entomol 16:369–381

    Article  Google Scholar 

  • Sirohi MH, Jackson J, Edwards M, Ollerton J (2015) Diversity and abundance of solitary and primitively eusocial bees in an urban Centre: a case study from Northampton (England). J Insect Conserv 19:487–500

    Article  Google Scholar 

  • Spiesman BJ, Gratton C (2016) Flexible foraging shapes the topology of plant-pollinator interaction networks. Ecology 97:1431–1441

    Article  PubMed  Google Scholar 

  • Stanley DA, Stout JC (2014) Pollinator sharing between mass-flowering oilseed rape and co-flowering wild plants: implications for wild plant pollination. Plant Ecol 215:315–325

    Article  Google Scholar 

  • Sun S, Frelich LE (2011) Flowering phenology and height growth pattern are associated with maximum plant height, relative growth rate and stem tissue mass density in herbaceous grassland species. J Ecol 99:991–1000

    Article  Google Scholar 

  • Thompson K, Austin KC, Smith RM, Warren PH, Angold PG, Gaston KJ (2003) Urban domestic gardens (I): putting small-scale plant diversity in context. J Veg Sci 14:71–78

    Article  Google Scholar 

  • Uchida K, Ushimaru A (2014) Biodiversity declines due to abandonment and intensification of agricultural lands: patterns and mechanisms. Ecol Monogr 84:637–658

    Article  Google Scholar 

  • Uchida K, Takahashi S, Shinohara T, Ushimaru A (2016) Threatened herbivorous insects maintained by long-term traditional management practices in semi-natural grasslands. Agric Ecosyst Environ 221:156–162

    Article  Google Scholar 

  • Ushimaru A (2008) The effects of human management on spatial distribution of two bumble bee species in a traditional agro-forestry satoyama landscape. J Apic Res:296–303

  • Venjakob C, Klein AM, Ebeling A, Tscharntke T, Scherber C (2016) Plant diversity increases spatio-temporal niche complementarity in plant-pollinator interactions. Ecol Evol 6:2249–2261

    Article  PubMed  PubMed Central  Google Scholar 

  • Westphal C, Steffan-Dewenter I, Tscharntke T (2003) Mass flowering crops enhance pollinator densities at a landscape scale. Ecol Lett 6:961–965

    Article  Google Scholar 

  • Westphal C, Steffan-Dewenter I, Tscharntke T (2006) Bumblebees experience landscapes at different spatial scales: possible implications for coexistence. Oecologia 149:289–300

    Article  PubMed  Google Scholar 

  • Winfree R, Aguilar R, Vázquez DP, LeBuhn G, Aizen MA (2009) A meta-analysis of bees' responses to anthropogenic disturbance. Ecology 90:2068–2076

    Article  PubMed  Google Scholar 

  • Winfree R, Bartomeus I, Cariveau DP (2011) Native pollinators in anthropogenic habitats. Annu Rev Ecol Evol Syst 42:1–22

    Article  Google Scholar 

  • Wray JC, Elle E (2015) Flowering phenology and nesting resources influence pollinator community composition in a fragmented ecosystem. Landsc Ecol 30:261–272

    Article  Google Scholar 

Download references

Acknowledgments

G. K. received grant from JSPS KAKENHI grant Number 15H02641, and S. N. was funded by Ministry of Agriculture, Forestry and Fisheries. We appreciate Teruyoshi Nagamitsu for his critical comments and suggestions. Takuya Kubo helped in the statistical analysis, Yukihiro Amagai supported GIS analysis, and Rika Hirano supported in data collection. The Botanical Garden of Hokkaido University allowed additional flower sampling. Lastly, we would like to express our gratitude to the warm understanding of the residents in the study areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoko Nakamura.

Electronic supplementary material

Online Resource 1

List of floral species visited by bumblebees (XLSX 20 kb)

Online Resource 2

Table S1 Classification of floral morphology, nectar and pollen volume per floral unit, and references. Table S2 Time (min) spent on bumblebee observation for each observation method. Table S3 Differences in individual floral traits of plant species between the urban and natural areas and between the open and forest habitats. Fig. S1 Bumblebee phenology in the urban area in 2011 (a) and 2012 (b), and in the natural area in 2011 (c) and 2012 (d). W: Worker, Q: Queen, M: Male, Beat: Bombus beaticola moshkarareppus Sakagami et Ishikawa, Yezo: B. yezoensis Matsumura, Pse: B. pseudobaicalensis Vogt, Div: B. diversus tersatus Smith, Ter: B. terrestris (L.), Hypo: B. hypocrita sapporoensis Cockerell, Hypno: B. hypnorum koropokkrus Sakagami et Ishikawa, Ard: B. ardens sakagamii Tkalců. Fig. S2 Seasonal changes in the visitation frequency of bumblebees to individual plant species in the forest habitat (a) and open habitat (b) in the urban area and in the forest habitat (c) and open habitat (d) in the natural area, and the relationship between visitation frequency within a focal habitat and floral richness in another habitat in the forest habitat (e) and open habitat (f). Each circle or triangle represents visitation frequency in each term and year. Refer the caption of Fig. 2 for details of flower abundance categorization (H, M, and L). (PDF 2.06 mb)

Online Resource 3

Table of floral traits of each species (XLSX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, S., Kudo, G. The influence of garden flowers on pollinator visits to forest flowers: comparison of bumblebee habitat use between urban and natural areas. Urban Ecosyst 22, 1097–1112 (2019). https://doi.org/10.1007/s11252-019-00891-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-019-00891-5

Keywords

Navigation