Skip to main content

Advertisement

Log in

Effects of park size, peri-urban forest spillover, and environmental filtering on diversity, structure, and morphology of ant assemblages in urban park

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Urban parks are likely the last green areas to preserve fauna diversity in urban ecosystems. We predicted that 1) species richness and ant diversity would increase with increasing park size, and species richness and ant diversity would be inversely related to distance from a peri-urban forest. 2) Larger ants would be predictably prevalent in less-complex habitats but the reverse should be true for small ants. The study was conducted in 47 parks of varying size located in Taichung City, Taiwan. In total, 14,324 ant individuals from 50 morphospecies and 22 genera were collected. No relationship between ant diversity and distance from a peri-urban forest. No significant clustering in functional composition with increasing park size and distance from a peri-urban forest. However, urban ant diversity marginally increased with increasing park size. Larger parks, characterize by heterogeneous fine-scale habitats, had the highest ant species and abundance of ants. The prevalences of opportunist, generalised myrmicinae (GM), and cryptic ant species were linked to increased soil moisture, number of tree species, and leaf litter depth. The positive association between GM and the number of trash bins. Our finding disproved the size-grain hypothesis, but hotter ground surface favored the presence of long-legged ants. The significant association between head width, inter-eye distance, eye width, and environmental variables such as understory vegetation cover, leaf litter depth, and soil temperature suggest that predaceous ants might be prevalent in heterogeneous fine-scale local microhabitats. In conclusion, our study evidenced the importance of heterogeneous fine-scale habitats in urban park to biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldous D (2010) Greening south east Asian capital cities. In: 22 nd IFPRA world congress. pp 15-18

  • Alonso LE, Agosti D (2000) Biodiversity studies, monitoring and ants: an overview. In: Agosti D, Majer J, Alonso L, Schultz T (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington D.C., pp 1–9

    Google Scholar 

  • Andersen AN (2000) A global ecology of rainforest ants: functional groups in relation to environmental stress and disturbance. In: Agosti D, Majer J, Alonso L, Schultz T (eds) Ants: standard methods for measuring and monitoring biodiversity, biological. Smithsonian Institution Press, Washington D.C., pp 25–34

    Google Scholar 

  • Andersen AN, Majer JD (2004) Ants show the way down under: invertebrates as bioindicators in land management. Front Ecol Environ 2:291–298

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2017) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1–13

  • Bazzaz FA (1975) Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology 56:485–488

    Article  Google Scholar 

  • Bolger DT, Suarez AV, Crooks KR, Morrison JC, Case TJ (2000) Arthropods in urban habitat fragments in southern California: area, age, and edge effects. Ecol Appl 10:1230–1248

    Article  Google Scholar 

  • Bolton B (1994) Identification guide to the ant genera of the world. Harvard University Press

  • Bos MM, Tylianakis JM, Steffan-Dewenter I, Tscharntke T (2008) The invasive yellow crazy ant and the decline of forest ant diversity in Indonesian cacao agroforests. Biol Invasions 10:1399–1409

    Article  Google Scholar 

  • Brown AM, Warton DI, Andrew NR, Binns M, Cassis G, Gibb H (2014) The fourth-corner solution–using predictive models to understand how species traits interact with the environment. Methods Ecol Evol 5:344–352

    Article  Google Scholar 

  • Brühl CA, Eltz T (2010) Fuelling the biodiversity crisis: species loss of ground-dwelling forest ants in oil palm plantations in Sabah, Malaysia (Borneo). Biodivers Conserv 19:519–529. https://doi.org/10.1007/s10531-009-9596-4

    Article  Google Scholar 

  • Burnham KP, Overton WS (1979) Robust estimation of population size when capture probabilities vary among animals. Ecology 60:927–936

    Article  Google Scholar 

  • Cerdá X, Retana J (2000) Alternative strategies by thermophilic ants to cope with extreme heat: individual versus colony level traits. Oikos 89:155–163

    Article  Google Scholar 

  • Cerdá X, Retana J, Cros S (1998) Critical thermal limits in Mediterranean ant species: trade-off between mortality risk and foraging performance. Funct Ecol 12:45–55. https://doi.org/10.1046/j.1365-2435.1998.00160.x

    Article  Google Scholar 

  • Chamberlain DE, Cannon AR, Toms MP, Leech DI, Hatchwell BJ, Gaston KJ (2009) Avian productivity in urban landscapes: a review and meta-analysis. Ibis 151:1–18

    Article  Google Scholar 

  • Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791

    Article  CAS  PubMed  Google Scholar 

  • Chao A, Hwang WH, Chen YC, Kuo CY (2000) Estimated the number of shared species in two communities. Stat Sin 10:227–246

    Google Scholar 

  • Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from simples, version 9.0 http://purl.oclc.org/estimates. Accessed 20 Sept 2017

  • Connor EF, Hafernik J, Levy J, Moore VL, Rickman JK (2002) Insect conservation in an urban biodiversity hotspot: the San Francisco bay area. Insect Conserv 6:247–259

    Article  Google Scholar 

  • de Souza DR, dos Santos SG, Munhae CD, Morini MSD (2012) Diversity of epigeal ants (hymenoptera: Formicidae) in urban areas of alto Tiete. Sociobiology 59:703–717

    Google Scholar 

  • Diamond SE, Chick L, Perez A, Strickler SA, Martin RA (2017) Rapid evolution of ant thermal tolerance across an urban-rural temperature cline. Biol J Linn Soc 121:248–257

    Article  Google Scholar 

  • ESCAP (2015) The state of Asian and Pacific cities 2015: urban tranformations shifting from quantity to quality. UN Habitat, London

    Google Scholar 

  • Espadaler X, Gómez C (2001) Formicine ants comply with the size-grain hypothesis. Funct Ecol 15:136–138. https://doi.org/10.1046/j.1365-2435.2001.00490.x

    Article  Google Scholar 

  • Fayle TM, Turner EC, Snaddon JL, Chey VK, Chung AYC, Eggleton P, Foster WA (2010) Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf-litter. Basic Appl Ecol 11:337–345. https://doi.org/10.1016/j.baae.2009.12.009

    Article  Google Scholar 

  • Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7:1221–1244

    Article  Google Scholar 

  • Gelman A et al. (2016) Data analysis using regression and multilevel/hierarchical models. Package ‘arm’ version 1.9-3

  • Gibb H, Stoklosa J, Warton D, Brown A, Andrew N, Cunningham S (2015) Does morphology predict trophic position and habitat use of ant species and assemblages? Oecologia 177:519–531

    Article  CAS  PubMed  Google Scholar 

  • Gosling L, Sparks TH, Araya Y, Harvey M, Ansine J (2016) Differences between urban and rural hedges in England revealed by a citizen science project. BMC Ecol 16:15. https://doi.org/10.1186/s12898-016-0064-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray CL, Simmons BI, Fayle TM, Mann DJ, Slade EM (2016) Are riparian forest reserves sources of invertebrate biodiversity spillover and associated ecosystem functions in oil palm landscapes? Biol Conserv 194:176–183 https://doi.org/10.1016/j.biocon.2015.12.017

    Article  Google Scholar 

  • Guénard B, Cardinal-De Casas A, Dunn RR (2015) High diversity in an urban habitat: are some animal assemblages resilient to long-term anthropogenic change? Urban Ecosyst 18:449–463. https://doi.org/10.1007/s11252-014-0406-8

    Article  Google Scholar 

  • Heterick BE, Lythe M, Smithyman C (2013) Urbanisation factors impacting on ant (hymenoptera: Formicidae) biodiversity in the Perth metropolitan area, Western Australia: two case studies. Urban Ecosyst 16:145–173. https://doi.org/10.1007/s11252-012-0257-0

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Hölldobler B, Wilson EO (1994) Journey to the ants: a story of scientific exploration. Harvard University Press, Cambridge

    Google Scholar 

  • Holway DA, Suarez AV (2006) Homogenization of ant communities in mediterranean California: the effects of urbanization and invasion. Biol Conserv 127:319–326. https://doi.org/10.1016/j.biocon.2005.05.016

    Article  Google Scholar 

  • Hood WG, Tschinkel WR (1990) Desiccation resistance in arboreal and terrestrial ants. Physiol Entomol 15:23–35

    Article  Google Scholar 

  • Hsu FC (2015) The research of ant communities in the vertical structure of Lienhuachih forest dynamics plot. National Chanhua University of Education

  • Ives CD, Hose GC, Nipperess DA, Taylor MP (2011) Environmental and landscape factors influencing ant and plant diversity in suburban riparian corridors. Landsc Urban Plan 103:372–382. https://doi.org/10.1016/j.landurbplan.2011.08.009

    Article  Google Scholar 

  • Ives CD, Taylor MP, Nipperess DA, Hose GC (2013) Effect of catchment urbanization on ant diversity in remnant riparian corridors. Landsc Urban Plan 110:155–163. https://doi.org/10.1016/j.landurbplan.2012.11.005

    Article  Google Scholar 

  • Kaspari M (1993) Body size and microclimate use in Neotropical granivorous ants. Oecologia 96:500–507

    Article  PubMed  Google Scholar 

  • Kaspari M, Weiser MD (1999) The size–grain hypothesis and interspecific scaling in ants. Funct Ecol 13:530–538. https://doi.org/10.1046/j.1365-2435.1999.00343.x

    Article  Google Scholar 

  • Kay AD, Zumbusch T, Heinen JL, Marsh TC, Holway DA (2010) Nutrition and interference competition have interactive effects on the behavior and performance of argentine ants. Ecology 91:57–64

    Article  PubMed  Google Scholar 

  • Konorov EA, Nikitin MA, Mikhailov KV, Lysenkov SN, Belenky M, Chang PL, Nuzhdin SV, Scobeyeva VA (2017) Genomic exaptation enables Lasius niger adaptation to urban environments. BMC Evol Biol 17:39. https://doi.org/10.1186/s12862-016-0867-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lach L, Hoffmann BD (2011) Are invasive ants better plant-defense mutualists? A comparison of foliage patrolling and herbivory in sites with invasive yellow crazy ants and native weaver ants. Oikos 120:9–16

    Article  Google Scholar 

  • Lin CC (1998) Systematic and zoogeographic studies on the ant subfamily Myrmicinae in Taiwan (Hymenoptera: Formicidae). Ph. D. Dissertation, National Taiwan University Press, Taiwan

  • Lucey JM, Hill JK (2012) Spillover of insects from rain forest into adjacent oil palm plantations. Biotropica 44:368–377

    Article  Google Scholar 

  • Lucey JM, Tawatao N, Senior MJM, Chey VK, Benedick S, Hamer KC, Woodcock P, Newton RJ, Bottrell SH, Hill JK (2014) Tropical forest fragments contribute to species richness in adjacent oil palm plantations. Biol Conserv 169:268–276 https://doi.org/10.1016/j.biocon.2013.11.014

    Article  Google Scholar 

  • Luke SH, Fayle TM, Eggleton P, Turner EC, Davies RG (2014) Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodivers Conserv 23:2817–2832

    Article  Google Scholar 

  • McDonald RI, Kareiva P, Forman RTT (2008) The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol Conserv 141:1695–1703. https://doi.org/10.1016/j.biocon.2008.04.025

    Article  Google Scholar 

  • McIntyre NE (2000) Ecology of urban arthropods: a review and a call to action Ann Entomol Soc am 93:825-835. https://doi.org/10.1603/0013-8746(2000)093[0825:eouaar]2.0.co;2

  • McKinney ML (2002) Urbanization, biodiversity, and conservation. BioScience 52:883–890

    Article  Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260. https://doi.org/10.1016/j.biocon.2005.09.005

    Article  Google Scholar 

  • Neoh KB, Bong LJ, Muhammad A, Itoh M, Kozan O, Takematsu Y, Yohimura T (2017) The effect of remnant forest on insect successional response in tropical fire-impacted peatland: a bi-taxa comparison. PLoS One 12(13):e0174388. https://doi.org/10.1371/journal.pone.0174388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D'amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. BioScience 51:933–938

    Article  Google Scholar 

  • Ossola A, Nash MA, Christie FJ, Hahs AK, Livesley SJ (2015) Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants. PeerJ 3:e1356. https://doi.org/10.7717/peerj.1356

    Article  PubMed  PubMed Central  Google Scholar 

  • Pacheco R, Vasconcelos HL (2007) Invertebrate conservation in urban areas: Ants in the Brazilian Cerrado. Landsc Urban Plan 81:193–199. https://doi.org/10.1016/j.landurbplan.2006.11.004

    Article  Google Scholar 

  • Parr ZJE, Parr CL, Chown SL (2003) The size-grain hypothesis: a phylogenetic and field test. Ecol Entomol 28:475–481. https://doi.org/10.1046/j.1365-2311.2003.00529.x

    Article  Google Scholar 

  • Pauchard A, Aguayo M, Peña E, Urrutia R (2006) Multiple effects of urbanization on the biodiversity of developing countries: the case of a fast-growing metropolitan area (Concepción, Chile). Biol Conserv 127:272–281. https://doi.org/10.1016/j.biocon.2005.05.015

    Article  Google Scholar 

  • Pećarević M, Danoff-Burg J, Dunn RR (2010) Biodiversity on broadway - Enigmatic diversity of the societies of ants (Formicidae) on the streets of New York City. PLoS ONE 5:e13222. https://doi.org/10.1371/journal.pone.0013222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penick CA, Savage AM, Dunn RR (2015) Stable isotopes reveal links between human food inputs and urban ant diets. Proc R Soc B Biol Sci 282. https://doi.org/10.1098/rspb.2014.2608

  • Prugha LR, Hodgesb KE, Sinclairc ARE, Brasharesa JS (2008) Effect of habitat area and isolation on fragmented animal populations. Proc Natl Acad Sci U S A 105:20770–20775

    Article  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna http://www.R-project.org/. Accessed 11 Dec 2017

  • Rand TA, Louda SM (2006) Spillover of agriculturally subsidized predators as a potential threat to native insect herbivores in fragmented landscapes. Conserv Biol 20:1720–1729. https://doi.org/10.1111/j.1523-1739.2006.00507.x

    Article  PubMed  Google Scholar 

  • Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614. https://doi.org/10.1111/j.1461-0248.2006.00911.x

    Article  PubMed  Google Scholar 

  • Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99

    Article  CAS  PubMed  Google Scholar 

  • Ricketts TH (2004) Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv Biol 18:1262–1271

    Article  Google Scholar 

  • Rissing SW, Pollock GB (1984) Worker size variability and foraging efficiency in Veromessor pergandei (Hym.: Formicidae). Behav Ecol Sociobiol 15:121–126

    Article  Google Scholar 

  • Roberts B, Kanaley T (2006) Urbanization and sustainability in Asia: Case studies of good practice. Asian Development Bank, Cities Alliance, Manila

  • Rocha-Ortega M, Castaño-Meneses G (2015) Effects of urbanization on the diversity of ant assemblages in tropical dry forests, Mexico. Urban Ecosyst 18:1373–1388. https://doi.org/10.1007/s11252-015-0446-8

    Article  Google Scholar 

  • Sanford MP, Manley PN, Murphy DD (2009) Effects of urban development on ant communities: implications for ecosystem services and management. Conserv Biol 23:131–141

    Article  PubMed  Google Scholar 

  • Santos MN (2016) Research on urban ants: approaches and gaps. Insect Soc 63:359–371. https://doi.org/10.1007/s00040-016-0483-1

    Article  Google Scholar 

  • Sarty M, Abbott KL, Lester PJ (2006) Habitat complexity facilitates coexistence in a tropical ant community. Oecologia 149:465–473

    Article  CAS  PubMed  Google Scholar 

  • Savage AM, Hackett B, Guénard B, Youngsteadt EK, Dunn RR (2014) Fine-scale heterogeneity across Manhattan's urban habitat mosaic is associated with variation in ant composition and richness. Insect Conserv Divers 8:216–228. https://doi.org/10.1111/icad.12098

    Article  Google Scholar 

  • Schmidt MH, Thies C, Nentwig W, Tscharntke T (2008) Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J Biogeogr 35:157–166

    Google Scholar 

  • Scriven SA, Beale CM, Benedick S, Hill JK (2016) Barriers to dispersal of rain forest butterflies in tropical agricultural landscapes. Biotropica 49:206–216. https://doi.org/10.1111/btp.12397

    Article  Google Scholar 

  • Shepherd PA (1994) A review of plant communities of derelict land in the city of Nottingham, England and their value for nature conservation. Mem Zoologi 49:129–137

    Google Scholar 

  • Shochat E, Lerman SB, Katti M, Lewis DB (2004) Linking optimal foraging behavior to bird community structure in an urban-desert landscape: field experiments with artificial food patches. Am Nat 164:232–243

    Article  PubMed  Google Scholar 

  • Shochat E, Warren PS, Faeth SH, McIntyre NE, Hope D (2006) From patterns to emerging processes in mechanistic urban ecology. Trends Ecol Evol 21:186–191. https://doi.org/10.1016/j.tree.2005.11.019

    Article  PubMed  Google Scholar 

  • Silva RR, Brandão CRF (2010) Morphological patterns and community organization in leaf-litter ant assemblages. Ecol Monogr 80:107–124

    Article  Google Scholar 

  • Slipinski P, Zmihorski M, Czechowski W (2012) Species diversity and nestedness of ant assemblages in an urban environment. Eur J Entomol 109:197–206

    Article  Google Scholar 

  • ter Braak C, Smilauer P (2012) CANOCO reference manual and user’s guide: software for ordination (version 5.0). Microcomputer power, Ithaca, NY, USA

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • The World Bank (2014) Climate Change: Urban Population https://data.worldbank.org/indicator/SP.URB.TOTL?end=2017&start=1960&view=chart. Accessed 13 Aug 2018

  • Vasconcelos HL, Vilhena JMS, Magnusson WE, Albernaz ALKM (2006) Long-term effects of forest fragmentation on Amazonian ant communities. J Biogeogr 33:1348–1356. https://doi.org/10.1111/j.1365-2699.2006.01516.x

    Article  Google Scholar 

  • Vital MR, de Castro MM, Zeringota V, Prezoto F (2015) Myrmecofauna of urban gardens in southeast region of Brazil. Biosci J 31:1205–1212

    Article  Google Scholar 

  • Vonshak M, Gordon DM (2015) Intermediate disturbance promotes invasive ant abundance. Biol Conserv 186:359–367

    Article  Google Scholar 

  • Wang Y, Naumann U, Wright ST, Warton DI (2012) Mvabund– an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol 3:471–474. https://doi.org/10.1111/j.2041-210X.2012.00190.x

    Article  Google Scholar 

  • Wiescher PT, Pearce-Duvet JMC, Feener DH (2012) Assembling an ant community: species functional traits reflect environmental filtering. Oecologia 169:1063–1074. https://doi.org/10.1007/s00442-012-2262-7

    Article  PubMed  Google Scholar 

  • Wills BD, Chong CD, Wilder SM, Eubanks MD, Holway DA, Suarez AV (2015) Effect of carbohydrate supplementation on investment into offspring number, size, and condition in a social insect. PLoS One 10:e0132440. https://doi.org/10.1371/journal.pone.0132440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T (2004) Influence of urbanization on ant distribution in parks of Tokyo and Chiba City, Japan - I. Analysis of ant species richness. Ecol Res 19:209–216. https://doi.org/10.1111/j.1440-1703.2003.00625.x

    Article  Google Scholar 

  • Yamamoto J, Uchida K, Takami Y (2013) Colonization and persistence of urban ant populations as revealed by joint estimation of kinship and population genetic parameters. J Hered 104:639–648

    Article  PubMed  Google Scholar 

  • Yanoviak SP, Kaspari M (2000) Community structure and the habitat templet: ants in the tropical forest canopy and litter. Oikos 89:259–266. https://doi.org/10.1034/j.1600-0706.2000.890206.x

    Article  Google Scholar 

  • Yasuda M, Koike F (2009) The contribution of the bark of isolated trees as habitat for ants in an urban landscape. Landsc Urban Plan 92:276–281. https://doi.org/10.1016/j.landurbplan.2009.05.008

    Article  Google Scholar 

  • Yates ML, Andrew NR, Binns M, Gibb H (2014) Morphological traits: predictable responses to macrohabitats across a 300 km scale. PeerJ 2:e271. https://doi.org/10.7717/peerj.271

    Article  PubMed  PubMed Central  Google Scholar 

  • Youngsteadt E, Henderson RC, Savage AM, Ernst AF, Dunn RR, Frank SD (2015) Habitat and species identity, not diversity, predict the extent of refuse consumption by urban arthropods. Glob Chang Biol 21:1103–1115. https://doi.org/10.1111/gcb.12791

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Wan-Xuan Li (NCHU) for technical assistance and two anonymous referees whose comments greatly improved the manuscript. The project was supported by the Ministry of Science and Technology, Taiwan (MOST 106-2311-B-005-010-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kok-Boon Neoh.

Electronic supplementary material

ESM 1

(DOCX 27.4 kb)

ESM 2

(DOCX 18.3 kb)

ESM 3

(DOCX 19.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, KL., Peng, MH., Hung, YC. et al. Effects of park size, peri-urban forest spillover, and environmental filtering on diversity, structure, and morphology of ant assemblages in urban park. Urban Ecosyst 22, 643–656 (2019). https://doi.org/10.1007/s11252-019-00851-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-019-00851-z

Keywords

Navigation