Skip to main content

Advertisement

Log in

Nested patterns in urban butterfly species assemblages: respective roles of plot management, park layout and landscape features

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Increasing numbers of cities are currently developing sustainable policies aimed at promoting urban biodiversity and ecological dynamics through the planning of green networks and the implementation of more sustainable management practices. These human activities can strongly influence environmental factors on which the organization of ecological communities at different scales depends. Thus, it is of fundamental importance to understand the relative impact of local management, green space design and landscape features on the distribution and the abundance of species in urban areas. On the basis of 2 years of butterfly surveys in urban public parks within an extensive Mediterranean metropolitan area, Marseille (South-East France), the aim of this paper is to provide a better understanding of the effect of these three environmental scales (plot, park, landscape) on the composition and organization of species assemblages. Using variation partitioning and nestedness analysis on ecological data aggregated at plot-level and park-level respectively, we demonstrate the preponderant effect of landscape scale features on urban butterfly assemblages. Our results also highlight an important co-variation of plot management, park layout and urban landscape features, in their interaction with the community structure of urban butterflies. Although there is no significant species-area relationship, significantly nested patterns arise in species composition. Selective colonization appears as a driving force constraining the constitution of species assemblages within the city. However, a prospective study on adjacent more natural areas suggests that biotic limitations, interspecific competition and habitat filtering may play an important role if a larger portion of the urbanization gradient is explored, which remains to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1978) A Bayesian analysis of the minimum AIC procedure. Ann Inst Stat Math 30:9–14

    Article  Google Scholar 

  • Almeida-Neto M, Ulrich W (2011) A straightforward computational approach for quantifying nestedness using abundance data. Environ Model Softw 26:173–178

    Article  Google Scholar 

  • Almeida-Neto M, Guimarães P, Guimarães PR Jr, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and quantification. Oikos 117:1227–1239

    Article  Google Scholar 

  • Anderson WB, Wait DA (2001) Subsidized island biogeography: another new twist on an old theory. Ecol Lett 4:289–291

    Article  Google Scholar 

  • Atmar W, Patterson BD (1993) The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96:373–382

    Article  Google Scholar 

  • Barbaro L, Van Halder I (2009) Linking bird, carabid beetle and butterfly life- history traits to habitat fragmentation in mosaic landscapes. Ecography 32:321–333

    Article  Google Scholar 

  • Bastin L, Thomas CD (1999) The distribution of plant species in urban vegetation fragments. Landsc Ecol 14:493–507

    Article  Google Scholar 

  • Berglund H, Jonsson BG (2003) Nested plant and fungal communities; the importance of area and habitat quality in maximizing species capture in boreal old-growth forests. Biol Conserv 112:319–328

    Article  Google Scholar 

  • Blair RB, Launer AE (1997) Butterfly diversity and human land use: species assemblages along an urban gradient. Biol Conserv 80:113–125

    Article  Google Scholar 

  • Boecklen WJ (1997) Nestedness, biogeographic theory, and the design of nature reserves. Oecologia 112:123–142

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Brown KSJ (1991) Conservation of insects and their habitats: insects as indicators. In: Collins NM, Thomas JA (eds) The conservation of insects and their habitats. Academic, London, pp 449–504

    Google Scholar 

  • Brualdi RA, Sanderson JG (1999) Nested species subsets, gaps, and discrepancy. Oecologia 119:256–264

    Article  Google Scholar 

  • Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809

    Article  Google Scholar 

  • Bruun HH, Moen J (2003) Nested communities of alpine plants on isolated mountains: relative importance of colonization and extinction. J Biogeogr 30:297–303

    Article  Google Scholar 

  • Cadenasso ML, Pickett STA, Grove JM (2006) Dimensions of ecosystem complexity: heterogeneity, connectivity, and history. Ecol Complex 3:1–12

    Article  Google Scholar 

  • Campbell RE (2010) Spatial pattern and community assembly: does the configuration of stream networks influence their community structure? Ph.D thesis, University of Canterbury, New Zealand

  • Chiari C, Dinetti M, Licciardello C, Licitra G, Pautasso M (2010) Urbanization and the more-individuals hypothesis. J Anim Ecol 79:366–371

    Article  PubMed  Google Scholar 

  • Cornelis J, Hermy M (2004) Biodiversity relationships in urban and suburban parks in Flanders. Landsc Urban Plan 69:385–401

    Article  Google Scholar 

  • Croci S, Butet A, Georges A, Aguejdad R, Clergeau P (2008) Small urban woodlands as biodiversity conservation hot-spot: a multi-taxon approach. Landsc Ecol 23:1171–1186

    Article  Google Scholar 

  • Cutler AH (1994) Nested biotas and biological conservation: metrics, mechanisms, and meaning of nestedness. Landsc Urban Plan 28:73–82

    Article  Google Scholar 

  • Darlington PJ (1957) Zoogeography: the geographical distribution of animals. John Wiley & Sons Inc., New York and London

    Google Scholar 

  • Dearborn DC, Kark S (2010) Motivations for conserving urban biodiversity. Conserv Biol 24(2):432–40

    Article  PubMed  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R foundation for statistical computing, Austria. ISBN 3-900051-07-0, http://www.r-project.org. Accessed 1 Oct 2014

  • Driscoll DA (2008) The frequency of metapopulations, metacommunities and nestedness in a fragmented landscape. Oikos 117:297–309

    Article  Google Scholar 

  • Erhardt A (1985) Diurnal lepidoptera: sensitive indicators of cultivated and abandoned grassland. J Appl Ecol 22:849–861

    Article  Google Scholar 

  • Ericson L, Hansson L, Larsson TB, Rasmusson G (1988) The importance of residual biotopes for fauna and flora. In: Schreiber KF (ed.) Connectivity in landscape ecology. Proceedings of the 2nd International Seminar of IALE, Münster, pp 105–106

  • Fernández-Juricic E (2002) Can human disturbance promote nestedness? A case study with birds in an urban fragmented landscape. Oecologia 131:269–278

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2002) Treating the nestedness temperature calculator as a 'black box' can lead to false conclusions. Oikos 99:193–199

  • Fischer J, Lindenmayer DB (2005) Nestedness in fragmented landscapes: a case study on birds, arboreal marsupials and lizards. J Biogeogr 32:1737–1750

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Global Ecol Biogeogr 16:265–280

  • Graves SD, Shapiro AM (2003) Exotics as host plants of the California butterfly fauna. Biol Conserv 110:413–433

    Article  Google Scholar 

  • Heger T, Trepl L (2003) Predicting biological invasions. Biol Invasions 5:313–321

    Article  Google Scholar 

  • Heikkinen RK, Miska L, Kuussaari M, Pöyry J (2005) New insights into butterfly–environment relationships using partitioning methods. Proc R Soc Lond B Biol Sci 272:2203–2210

    Article  Google Scholar 

  • Home R, Bauer N, Hunziker M (2010) Cultural and biological determinants in the evaluation of urban green spaces. Environ Behav 42(4):494–523

    Article  Google Scholar 

  • Hortal J, Triantis KA, Meiri S, Thébault E, Sfenthourakis S (2009) Island species richness increases with habitat diversity. Am Nat 174(6):E205–E217

    Article  PubMed  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Hulten E (1937) Outline of the history of arctic and boreal biota during the quaternary period. Bokförlags aktiebolaget Thule, Stockholm

    Google Scholar 

  • IGN (2004) Base de données CARTO - Bouches-du-Rhône. Institut Géographique National

  • IGN (2006) Base de données 1000 - Marseille. Institut Géographique National

  • Ims RA (1995) Movement patterns related to spatial structures. In: Hansson L, Fahrig L, Merriam G (eds) Mosaic landscapes and ecological processes. Chapman & Hall, London, pp 85–10

    Chapter  Google Scholar 

  • Janz N (2005) The relationship between habitat selection and preference for adult and larval food resources in the polyphagous butterfly Vanessa cardui (Lepidoptera: Nymphalidae). J Insect Behav 18:767–780

    Article  Google Scholar 

  • Janz N, Bergstrom A, Sjogren A (2005) The role of nectar sources for oviposition decisions of the common blue butterfly polyommatus Icarus. Oikos 109:535–538

    Article  Google Scholar 

  • Joffre R, Rambal S, Damesin C (2007) Functional attributes in Mediterranean-type ecosystems. In: Pugnaire FI, Valladares F (eds) Functional plant ecology, 2nd edn. CRC Press, New York, pp 285–312

    Google Scholar 

  • Kitahara M, Fujii K (1994) Biodiversity and community structure of temperate butterfly species within a gradient of human disturbance: an analysis based on the concept of generalist vs. specialist strategies. Res Popul Ecol 36:187–199

    Article  Google Scholar 

  • Kitahara M, Fujii K (1997) An island biogeographical approach to the analysis of butterfly community patterns in newly designed parks. Res Popul Ecol 39:23–35

    Article  Google Scholar 

  • Lafranchis T (2000) Les Papillons de jour de France, Belgique et Luxembourg et leurs chenilles. Biotope, Mèze (France)

    Google Scholar 

  • Laurance WF (1991) Ecological correlates of extinction processes in Australian tropical rainforest mammals. Conserv Biol 5:79–89

    Article  Google Scholar 

  • Laurance WF (2008) Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol Conserv 141:1731–1744

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2 Englishth edn. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Leibold MA (1998) Similarity and local co-existence of species in regional biotas. Evol Ecol 12:95–110

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase J, Hoopes M, Holt R, Shurin J, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Levins R, Culver D (1971) Regional coexistence of species and competition between rare species. Proc Natl Acad Sci U S A 68:1246–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lizée MH, Mauffrey JF, Tatoni T, Deschamps-Cottin M (2011) Monitoring urban environments on the basis of biological traits. Ecol Indic 11:353–361

    Article  Google Scholar 

  • Lizée MH, Manel S, Mauffrey JF, Tatoni T, Deschamps-Cottin M (2012) Matrix configuration and patch isolation influences override the species-area relationship for urban butterfly communities. Landsc Ecol 27:159–169

    Article  Google Scholar 

  • Loertscher M, Erhardt A, Zettel J (1995) Microdistribution of butterflies in a mosaic-like habitat: the role of nectar sources. Ecography 18:15–26

    Article  Google Scholar 

  • Logue JB, Mouquet N, Peter H, Hillebrand H, The Metacommunity Working Group (2011) Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol Evol 26:482–491

    Article  PubMed  Google Scholar 

  • Lomolino MV (2000) Ecology’s most general, yet protean pattern: the species-area relationship. J Biogeogr 27:17–26

    Article  Google Scholar 

  • Lundholm JT (2006) How novel are urban ecosystems? Trends Ecol Evol 21:659–660

    Article  PubMed  Google Scholar 

  • Matteson KC, Langellotto GA (2010) Determinates of inner city butterfly and bee species richness. Urban Ecosyst 13:333–347

    Article  Google Scholar 

  • Mcdonald RI, Kareiva P, Forman RTT (2008) The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol Conserv 141:1695–1703

    Article  Google Scholar 

  • McFrederick Q, LeBuhn G (2006) Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)? Biol Conserv 129:372–382

    Article  Google Scholar 

  • McKinney ML (2002) Urbanization, biodiversity and conservation. Bioscience 52:883–890

    Article  Google Scholar 

  • Mouquet N, Loreau M (2003) Community patterns in source-sink metacommunities. Am Nat 162:544–557

    Article  PubMed  Google Scholar 

  • Murphy DD, Menninger MS, Ehrlich PR (1984) Nectar source distribution as a determinant of oviposition host species in euphydryas chalcedona. Oecologia 56:269–271

    Article  Google Scholar 

  • Niell RS, Brussard PF, Murphy DD (2007) Butterfly community composition and oak woodland vegetation response to rural residential development. Landsc Urban Plan 81:235–245

    Article  Google Scholar 

  • Nielsen AB, van den Bosch M, Maruthaveeran S, van den Bosch CK (2014) Species richness in urban parks and its drivers: a review of empirical evidence. Urban Ecosyst 17:305–327

    Article  Google Scholar 

  • Niemelä J, Kotze DJ, Venn S, Penev L, Stoyanov I, Spence J, Hartley D, de Oac EM (2002) Carabid beetle assemblages (Coleoptera, Carabidae) across urban–rural gradients: an international comparison. Landsc Ecol 17:387–401

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2010) Vegan: community ecology package. R package version 1.17. http://CRAN.R-project.org/package=vegan. Accessed 1 Oct 2014

  • Patterson BD (1987) The principle of nested subsets and its implications for biological conservation. Conserv Biol 1:323–334

    Article  Google Scholar 

  • Patterson BD, Atmar W (1986) Nested subsets and the structure of insular mammalian faunas and archipelagoes. Biol J Linn Soc 28:65–82

    Article  Google Scholar 

  • Patterson BD, Atmar W (2000) Analyzing species composition in fragments. In: Rheinwald G (ed) Isolated vertebrate communities in the tropics, Proc 4th Int Symp, vol 46. Bonner Zoologische Monographen, Germany, pp 9–24

    Google Scholar 

  • Peres-Neto P, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • Pickett STA, Cadenasso ML, Grove JM, Nilon CH, Pouyat RV, Zipperer WC, Costanza R (2001) Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu Rev Ecol Syst 32:127–157

    Article  Google Scholar 

  • Presley SJ, Higgins CL, Willig MR (2010) A comprehensive framework for the evaluation of metacommunity structure. Oikos 119:908–917

    Article  Google Scholar 

  • Rudd H, Vala J, Schaefer V (2002) Importance of backyard habitat in a comprehensive biodiversity conservation strategy: a connectivity analysis of urban green spaces. Restor Ecol 10:368–375

    Article  Google Scholar 

  • Sanford MP, Manley NP, Murphy DD (2009) Effects of urban development on ant communities: implications for ecosystem services and management. Conserv Biol 23:131–141

    Article  PubMed  Google Scholar 

  • Santin A (2004) Répertoire des plantes-hôtes et de substitution des chenilles du monde, Tomes 1 & 2. OPIE (Office Pour les Insectes et leur Environnement), Guyancourt, France

  • Schleicher A (2010) Spatio-temporally explicit incidence analysis of plant functional groups in metacommunities. Ph.D thesis, Carl von Ossietzky University of Oldenburg, Germany

  • Simberloff DS, Wilson EO (1969) Experimental zoogeography of islands: the colonization of empty islands. Ecology 50:278–296

    Article  Google Scholar 

  • Smith RM, Gaston KJ, Warren PH, Thompson K (2006) Urban domestic gardens (VIII): environmental correlates of invertebrate abundance. Biodivers Conserv 15:2515–2545

    Article  Google Scholar 

  • Snep RPH, Opdam PFM, Baveco JM, WallisDeVries MF, Timmermans W, Kwak RGM, Kuypers V (2006) How peri-urban areas can strengthen animal populations within cities: a modeling approach. Biol Conserv 127:345–355

    Article  Google Scholar 

  • Stevens VM, Turlure C, Baguette M (2010) A meta-analysis of dispersal in butterflies. Biol Rev 85(3):625–642

    PubMed  Google Scholar 

  • Tammaru T, Haukioja E (1996) Capital breeders and income breeders among Lepidoptera - consequences to population dynamics. Oikos 77:561–564

    Article  Google Scholar 

  • Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc Lond B Biol Sci 268:1791–1796

    Article  CAS  Google Scholar 

  • Tolman T, Lewington R (1999) Guide des papillons d’Europe et d’Afrique du Nord. Delachaux & Niestlé, Lausanne (Switzerland)

    Google Scholar 

  • Triantis KA, Vardinoyannis K, Tsolaki EP, Botsaris I, Lika K, Mylonas M (2006) Re-approaching the small island effect. J Biogeogr 33:914–923

    Article  Google Scholar 

  • Ulrich W (2009) Nestedness analysis as a tool to identify ecological gradients. Ecol Quest 11:27–34

    Article  Google Scholar 

  • Ulrich W, Gotelli NJ (2007) Null model analysis of species nestedness patterns. Ecology 88:1824–1831

    Article  PubMed  Google Scholar 

  • Ulrich W, Almeida-Neto M, Gotelli NG (2009) A consumer’s guide to nestedness analysis. Oikos 118:3–17

    Article  Google Scholar 

  • Urban MC (2004) Disturbance heterogeneity determines freshwater metacommunity structure. Ecology 85(11):2971–2978

    Article  Google Scholar 

  • Wang GM, Jiang GM, Zhou YL, Liu QR, Ji YS, Wang SX, Chen SB, Liu H (2007) Biodiversity conservation in a fast-growing metropolitan area in China: a case study of plant diversity in Beijing. Biodivers Conserv 16:4025–4038

    Article  Google Scholar 

  • Wiklund C (1977) Oviposition, feeding and spatial separation of breeding and foraging habitats in a population of leptidea sinapis (Lepidoptera). Oikos 28:56–68

    Article  Google Scholar 

  • Wiklund C, Karlsson B, Leimar O (2001) Sexual conflict and cooperation in butterfly reproduction: a comparative study on polyandry and female fitness. Proc R Soc Lond B Biol Sci 268:1661–1667

    Article  CAS  Google Scholar 

  • Worthen WB, Jones MT, Jetton RM (1998) Community structure and environmental stress: desiccation promotes nestedness in mycophagous fly communities. Oikos 81:45–54

    Article  Google Scholar 

  • Wright DH, Patterson BD, Mikkelson GM, Cutler A, Atmar W (1998) A comparative analysis of nested subset patterns of species composition. Oecologia 113:1–20

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Parks and Gardens authority of the City of Marseille and in particular Patrick Bayle for facilitating our access to the city’s parks. We thank Simon Pascal and Anaïs Onno for their help in collecting butterfly data. This study was carried out as part of the “PIRVE” Program (PIRVE#6-1025) (city and environment interdisciplinary research program) and the ANR “Villes Durables” (sustainable cities) Program (#VD08 321105). We are grateful to Michael Paul for improving the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Hélène Lizee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 63 kb)

ESM 2

(DOC 30 kb)

ESM 3

(DOC 98 kb)

ESM 4

(DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizee, MH., Tatoni, T. & Deschamps-Cottin, M. Nested patterns in urban butterfly species assemblages: respective roles of plot management, park layout and landscape features. Urban Ecosyst 19, 205–224 (2016). https://doi.org/10.1007/s11252-015-0501-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-015-0501-5

Keywords

Navigation