Skip to main content

Advertisement

Log in

Assessing aquatic biodiversity of zooplankton communities in an urban landscape

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Aquatic ecosystems are common in urban environments. A solid understanding of aquatic species’ distributions in urban habitats will both advance urban ecology and preserve biodiversity in cities. In particular, zooplankton are central components of aquatic food webs and their biodiversity patterns thus warrant further characterization and understanding. We examined sources of variation and biodiversity patterns of zooplankton communities across eighteen waterbodies in the urban landscape of Canada’s large island city of Montreal. We report a total of 80 zooplankton taxa of which rotifers and cladocerans were major contributing taxa to biodiversity. We found a lack of agreement between contributions of individual waterbodies to rotifer and cladoceran beta diversity. Littoral vegetated zones proved to be important habitats for zooplankton biodiversity, contributing considerably to the species richness pool, often with a different species composition. Further variation in zooplankton community composition was attributable to local factors such as waterbody size, algal biomass and composition, and macroinvertebrate predators, but also to urban management practices such as waterbody draining during winter. We show that urban waterbodies can represent important reservoirs of biodiversity. Management practices favoring a large diversity of permanent and temporary habitats with littoral vegetated zones should be incorporated in urban design and conservation plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson MJ (2006) Distance‐Based Tests for Homogeneity of Multivariate Dispersions. Biometrics 62(1):245–253

    Article  PubMed  Google Scholar 

  • Barnett A, Beisner BE (2007) Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution. Ecology 88(7):1675–1686

    Article  PubMed  Google Scholar 

  • Beisner BE, Peres-Neto PR, Lindström ES, Barnett A, Longhi ML (2006) The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87(12):2985–2991

    Article  PubMed  Google Scholar 

  • Beutler M, Wiltshire KH, Meyer B, Moldaenke C, Lüring C, Meyerhöfer M, Hansen UP, Dau H (2002) A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth Res 72(1):39–53

    Article  CAS  PubMed  Google Scholar 

  • Boix D, Gascón S, Martinoy M, Gifre J, Quintana XD (2005) A new index of water quality assessment in Mediterranean wetlands based on crustacean and insect assemblages: the case of Catalunya (NE Iberian Peninsula). Aquat Conserv 15(6):635–651

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical Ecology with R. Springer, Verlag

    Book  Google Scholar 

  • Boven L, Brendonck L (2009) Impact of hydroperiod on seasonal dynamics in temporary pool cladoceran communities. Fund Appl Limnol 174(2):147–157

    Article  Google Scholar 

  • Brooks JL (1959) Cladocera. In: Ward HB, Whipple GC (eds) Freshwater biology. Wiley, New York, pp 587–656

    Google Scholar 

  • Burks RL, Jeppesen E, Lodge DM (2001a) Littoral zone structures as Daphnia refugia against fish predators. Limnol Oceanogr 46(2):230–237

    Article  Google Scholar 

  • Burks RL, Jeppesen E, Lodge DM (2001b) Pelagic prey and benthic predators: impact of odonate predation on Daphnia. J N Am Benthol Soc 20(4):615–628

    Article  Google Scholar 

  • Burks RL, Lodge DM, Jeppesen E, Lauridsen TL (2002) Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biol 47(3):343–365

    Article  Google Scholar 

  • Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3(1):1–27

    Google Scholar 

  • Céréghino R, Biggs J, Oertli B, Declerck S (2008) The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597(1):1–6

    Article  Google Scholar 

  • Chengalath R, Koste W (1987) Rotifera from Northwestern Canada. Hydrobiologia 147:49–56

    Article  Google Scholar 

  • Cobbaert D, Bayley S, Gretter JL (2010) Effects of a top invertebrate predator (Dytiscus alaskanus; Coleoptera: Dytiscidae) on fishless pond ecosystems. Hydrobiologia 644:103–114

    Article  CAS  Google Scholar 

  • Collins JP, Kinzig A, Grimm NB, Fagan WB, Hope D, Wu J, Borer E (2000) A New Urban Ecology Modelling Human Communities as Integral Parts of Ecosystems Poses Special Problems for the Development and Testing of Ecological Theory. Am Sci 88(5):416–425

    Article  Google Scholar 

  • Connelly SJ, Wolyniak EA, Dieter KL, Williamson CE, Jellison KL (2007) Impact of zooplankton grazing on the excystation, viability, and infectivity of the protozoan pathogens Cryptosporidium parvum and Giardia lamblia. Appl Environ Microb 73(22):7277–7282

    Article  CAS  Google Scholar 

  • De Bie T, Declerck S, Martens K, De Meester L, Brendonck L (2010) A comparative analysis of cladoceran communities from different water body types: patterns in community composition and diversity. Hydrobiologia 597(1):19–27

    Article  Google Scholar 

  • De Bie T, De Meester L, Martens K, Goddeeris B, Ercken D, Hampel H, Denys L, Vanhecke L, Gucht K (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett 15(7):740–747

    Article  PubMed  Google Scholar 

  • De Magny GC, Mozumder PK, Grim CJ, Hasan NA, Naser MN, Alam M, Bradley S, Anwar H, Rita RC (2011) Population Dynamics of Vibrio cholerae and Cholera in the Bangladesh Sundarbans: Role of the Zooplankton Diversity. Appl Environ Microb 77(17):6125–6132

    Article  Google Scholar 

  • De Meester L, Declerck S, Stoks R, Louette G, Van De Meutter F, De Bie T, Michels E, Brendonck L (2005) Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquat Conserv 15(6):715–725

    Article  Google Scholar 

  • Declerck S, De Bie T, Ercken D, Hampel H, Schrijvers S, Van Wichelen J, Gillardin JV, Mandiki R, Losson B, Bauwens D, Keijers S, Vyverman W, Goddeeris B, De Meester L, Brendonck L, Martens K (2006) Ecological characteristics of small farmland ponds: associations with land use practices at multiple spatial scales. Biol Conserv 131(4):523–532

    Article  Google Scholar 

  • DiFonzo CD, Campbell JM (1988) Spatial partitioning of microhabitats in littoral cladoceran communities. J Freshwater Ecol 4(3):303–313

    Article  Google Scholar 

  • Dodson SI, Lillie RA, Will-Wolf S (2005) Land use, water chemistry, aquatic vegetation, and zooplankton community structure of shallow lakes. Ecol Appl 15(4):1191–1198

    Article  Google Scholar 

  • Downing JA (2010) Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 1(29):9–24

    Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51(5):2388–2397

    Article  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20

    Article  Google Scholar 

  • Drenner SM, Dodson SI, Drenner RW, Pinder JE III (2009) Crustacean zooplankton community structure in temporary and permanent grassland ponds. Hydrobiologia 632(1):225–233

    Article  Google Scholar 

  • Duggan IC, Green JD, Shiel RJ (2001) Distribution of rotifers in North Island, New Zealand, and their potential use as bioindicators of lake trophic state. Hydrobiologia 446(447):155–164

    Article  Google Scholar 

  • Edmondson WT (1959) Rotifera. In: Ward HB, Whipple GC (eds) Freshwater biology. Wiley, New York, pp 420–494

    Google Scholar 

  • Ejsmont-Karabin J, Kuczyńska-Kippen N (2001) Urban rotifers: structure and densities of rotifer communities in water bodies of the Poznań agglomeration area (western Poland). Hydrobiologia 446(1):165–171

    Article  Google Scholar 

  • Escobar-Briones EG, Díaz C, Legendre P (2008) Meiofaunal community structure of the deep-sea Gulf of Mexico: Variability due to the sorting methods. Deep Sea Res Pt II 55(24):2627–2633, Unpublished Appendix describing two-way canonical analysis of variance for paired observations. Available online at http://www.adn.umontreal.ca/legendre/reprints

    Article  Google Scholar 

  • Escrivà A, Armengol X, Mezquita F (2010) Microcrustacean and rotiferan communities of two close Mediterranean mountina ponds, lagunas de Bezas and Rubiales (Spain). J Freshwater Ecol 25(3):427–435

    Article  Google Scholar 

  • Fairchild GW (1981) Movement and microdistribution of Sida crystallina and other littoral microcrustacea. Ecology 62(5):1341–1352

    Article  Google Scholar 

  • Fayer R, Trout JM, Walsh E, Cole R (2000) Rotifers ingest oocysts of Cryptosporidium parvum. J Eukaryot Microbiol 47(2):161–163

    Article  CAS  PubMed  Google Scholar 

  • Finlay K, Beisner BE, Patoine A, Pinel-Alloul B (2007) Regional ecosystem variability drives the relative importance of bottom-up and top-down factors for zooplankton size spectra. Can J Fish Aquat Sci 64(3):516–529

    Article  CAS  Google Scholar 

  • Frutos SM, Carnevali R (2008) Zoo-heleoplankton structure in three artificial ponds of North-eastern Argentina. Int J Tropic Biol 56(3):1135–1147

    CAS  Google Scholar 

  • Gannon JE, Stemberger RS (1978) Zooplankton (especially crustaceans and rotifers) as indicators of water quality. T Am Microsc Soc 97(1):16–35

    Article  Google Scholar 

  • Gaston KJ, Spicer JI (2004) Biodiversity: an introduction. Blackwell, Oxford

    Google Scholar 

  • Gélinas M, Pinel-Alloul B, Ślusarczyk M (2007) Formation of morphological defences in response to YOY perch and invertebrate predation in two Daphnia species coexisting in a mesotrophic lake. Hydrobiologia 594:175–185

    Article  Google Scholar 

  • Gilbert JJ (1974) Dormancy in rotifers. T Am Microsc Soc 93:490–513

    Article  Google Scholar 

  • Gilbert JJ, Hampton SE (2001) Diel vertical migrations of zooplankton in a shallow, fishless pond: a possible avoidance-response cascade induced by notonectids. Freshwat Biol 46(5):611–621

    Article  Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53(3–4):325–338

    Article  Google Scholar 

  • Gower JC, Legendre P (1986) Metric and Euclidean properties of dissimilarity coefficients. J Classif 3(1):5–48

    Article  Google Scholar 

  • Hairston NG Jr (1996) Zooplankton egg banks as biotic reservoirs in changing environments. Limnol Oceanogr 41(5):1087–1092

    Article  Google Scholar 

  • Hairston NG Jr, Hansen AM, Schaffner WR (2000) The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshwat Biol 45(2):133–145

    Article  Google Scholar 

  • Hampton SE, Gilbert JJ (2001) Observations of insect predation on rotifers. Hydrobiologia 446(1):115–121

    Article  Google Scholar 

  • Haney JF, Aliberti MA, Allan E, Allard S, Bauer DJ, Beagen W, Bradt SR, Carlson B, Carlson SC, Doan UM, Dufresne J, Godkin WT, Greene S, Kaplan A, Maroni E, Melillo S, Murby AL, Smith JL, Ortman B, Quist JE, Reed S, Rowin T, Schmuck M, Stemberger RS, Travers B (2010) An image-based key to the zooplankton of the northeast, USA version 4.0 released 2010. Durham, NH: University of New Hampshire Center for Freshwater Biology. http://cfb.unh.edu/cfbkey/html/

  • Hebert PDN (1995) The Daphnia of North America: an illustrated Fauna. CD-ROM, University of Guelph

  • Hudson PL, Lesko LT (2003) Free-living and Parasitic Copepods of the Laurentian Great Lakes: Keys and Details on Individual Species. Ann Arbor, MI: Great Lakes Science Center Home Page. http://www.glsc.usgs.gov/greatlakescopepods/

  • Jaccard P (1908) Nouvelles Recherches sur la Distribution Florale. B Soc Vaud Sci Nat 44:223–270

    Google Scholar 

  • Jose de Paggi S, Paggi J, Collins P, Collins J, Bernal G (2008) Water quality and zooplankton composition in a receiving pond of the stormwater runoff from an urban catchment. J Environ Biol 29(5):693–700

    CAS  PubMed  Google Scholar 

  • Kuczyńska-Kippen N (2009a) The Spatial Segregation of Zooplankton Communities with Reference to Land Use and Macrophytes in Shallow Lake Wielkowiejskie (Poland). Int Rev Hydrobiol 94(3):267–281

    Article  Google Scholar 

  • Kuczyńska-Kippen N (2009b) The impact of the macrophyte substratum and season on crustacean zooplankton communities of three shallow and macrophyte-dominated lakes. J Freshwater Ecol 24(3):375–382

    Article  Google Scholar 

  • Langley JM, Kett S, Al-Khalili RS, Humphries CJ (1995) The conservation value of English urban ponds in terms of their rotifer fauna. Hydrobiologia 313(1):259–266

    Article  Google Scholar 

  • Larson GL, Hoffman R, McIntire CD, Lienkaemper G, Samora B (2009) Zooplankton assemblages in montane lakes and ponds of Mount Rainier National Park, Washington State, USA. J Plankton Res 31(3):273–285

    Article  Google Scholar 

  • Legendre P, De Càceres M (2013) Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol Lett 16:951–953

    Article  PubMed  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology. Elsevier Science Ltd

  • Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monogr 75(4):435–450

    Article  Google Scholar 

  • Longhi ML, Beisner BE (2009) Environmental factors controlling the vertical distribution of phytoplankton in lakes. J Plankton Res 31(10):1195–1207

    Article  CAS  Google Scholar 

  • Mahoney DL, Mort MA, Taylor BE (1990) Species richness of calanoid copepods, cladocerans and other branchiopods in Carolina bay temporary ponds. Am Midl Nat 123(2):244–258

    Article  Google Scholar 

  • Maier G, Hössler J, Tessenow U (1998) Succession of physical and chemical conditions and of crustacean communities in some small, man made water bodies. Int Rev Hydrobiol 83(5–6):405–418

    Article  Google Scholar 

  • McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82(1):290–297

    Article  Google Scholar 

  • McDonnell MJ, Hahs AK (2013) The future of urban biodiversity research: Moving beyond the ‘low-hanging fruit’. Urban Ecosyst 16(3):397–409

    Article  Google Scholar 

  • McQueen DJ, Post JR, Mills EL (1986) Trophic relationship in freshwater pelagic ecosystems. Can J Fish Aquat Sci 43(8):1571–1581

    Article  Google Scholar 

  • Merritt RW, Cummins KW (1996) Introduction to the Aquatic Insects of North America, 3rd edn. Kendall/Hunt Publishing Company, Dubuque

    Google Scholar 

  • Moss B, Stephen D, Alvarez C, Becares E, Van De Bund W, Collings SE, Van Donk E, De Eyto E, Feldmann T, Fernández-Aláez C, Fernández-Aláez M, Franken RJM, García-Criado F, Gross EM, Gyllström M, Hansson L-A, Irvine K, Järvalt A, Jensen J-P, Jeppesen E, Kairesalo T, Kornijów R, Krause T, Künnap H, Laas A, Lill E, Lorens B, Luup H, Miracle MR, Nõges P, Nõges T, Nykänen M, Ott I, Peczula W, Peeters ETHM, Phillips G, Romo S, Russell V, Salujõe J, Scheffer M, Siewertsen K, Smal H, Tesch C, Timm H, Tuvikene L, Tonno I, Virro T, Vicente E, Wilson D (2003) The determination of ecological status in shallow lakes — a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquat Conserv 13(6):507–549

    Article  Google Scholar 

  • Nogrady T, Pourriot R, Segers H (1995) Rotifera volume 3: Notommatidae and Scaridiidae. Guides to the identification of the microinvertebrates of the continental waters of the world 8, NHBS, SPB Academic Publishing

  • Nowosad P, Kuczyńska-Kippen N, Słodkowicz-Kowalska A, Majewska AC, Graczyk TK (2007) The use of rotifers in detecting protozoan parasite infections in recreational lakes. Aquat Ecol 41(1):47–54

    Article  Google Scholar 

  • Oertli B, Joye DA, Castella E, Juge R, Cambin D, Lachavanne JB (2002) Does size matter? The relationship between pond area and biodiversity. Biol Conserv 104(1):59–70

    Article  Google Scholar 

  • Oertli B, Joye DA, Castella E, Juge R, Lehmann A, Lachavanne JB (2005) PLOCH: a standardized method for sampling and assessing the biodiversity in ponds. Aquat Conserv 15:665–679

    Article  Google Scholar 

  • Oksanen, J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Sólymos P, Stevens MHH, Wagner H (2012) vegan: Community Ecology Package. R package version 2.0-3. http://CRAN.R-project.org/package=vegan

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2):289–290

    Article  CAS  PubMed  Google Scholar 

  • Patoine A, Pinel-Alloul B, Prepas EE, Carignan R (2000) Do logging and forest fires influence zooplankton biomass in Canadian Boreal Shield lakes? Can J Fish Aquat Sci 57(S2):155–164

    Article  CAS  Google Scholar 

  • Peretyatko A, Teissier S, De Backer S, Triest L (2009) Restoration potential of biomanipulation for eutrophic peri-urban ponds: the role of zooplankton size and submerged macrophyte cover. Hydrobiologia 634(1):125–135

    Article  Google Scholar 

  • Peretyatko A, Teissier S, De Backer S, Triest L (2012) Biomanipulation of hypereutrophic ponds: when it works and why it fails. Environ Monit Assess 184(3):1517–1531

    Article  CAS  PubMed  Google Scholar 

  • Pickett STA, Burch WR, Dalton SE, Foresman TW, Grove JM, Rowntree R (1997) A conceptual framework for the study of human ecosystems in urban areas. Urban Ecosyst 1(4):185–199

    Article  Google Scholar 

  • Pinel-Alloul B (1995) Spatial heterogeneity as a multiscale characteristic of zooplankton community. Hydrobiologia 300(1):17–42

    Article  Google Scholar 

  • Pinel-Alloul B, Mimouni E-A (2013) Are cladoceran diversity and community structure linked to spatial heterogeneity in urban landscapes and pond environments? Hydrobiologia 715:195–212

    Article  CAS  Google Scholar 

  • Pinel-Alloul B, Méthot G, Verreault G, Vigneault Y (1990) Zooplankton species associations in Quebec lakes: variation with abiotic factors, including natural and anthropogenic acidification. Can J Fish Aquat Sci 47(1):110–121

    Article  Google Scholar 

  • Pinel-Alloul B, Niyonsenga T, Legendre P (1995) Spatial and environmental components of freshwater zooplankton structure. Ecoscience 2(1):1–19

    Google Scholar 

  • Pinel-Alloul B, André A, Legendre P, Cardille J, Patalas K, Salki A (2013) Large-scale geographic patterns of diversity and community structure of pelagic crustacean zooplankton in Canadian lakes. Global Ecol Biogeogr 22:784–795

    Article  Google Scholar 

  • Pinto-Coelho R, Pinel-Alloul B, Méthot G, Havens K (2005) Relationships of crustacean zooplankton with latitude and trophic gradients in lakes and reservoirs of temperate and tropical regions. Can J Fish Aquat Sci 62:348–361

    Article  CAS  Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0

    Google Scholar 

  • Radzikowski J (2013) Resistance of dormant stages of planktonic invertebrates to adverse environmental conditions. J Plankton Res 35(4):707–723

    Article  Google Scholar 

  • Rao CR (1995) A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. Qüestiió 19(1):23–63

    Google Scholar 

  • Ricci C (2001) Dormancy patterns in rotifers. Hydrobiologia 446(447):1–11

    Article  Google Scholar 

  • Sahuquillo M, Miracle MR (2010) Crustacean and rotifer seasonality in a Mediterranean temporary pond with high biodiversity (Lavajo de Abajo de Sinarcas, Eastern Spain). Limnetica 1(29):75–92

    Google Scholar 

  • Scheffer M, Portielje R, Zambrano L (2003) Fish facilitate wave resuspension of sediment. Limnol Oceanogr 48(5):1920–1926

    Article  Google Scholar 

  • Serrano L, Fahd K (2005) Zooplankton communities across a hydroperiod gradient of temporary ponds in the Doñana National Park (SW Spain). Wetlands 25(1):101–111

    Article  Google Scholar 

  • Smith DG (2001) Pennak’s Freshwater Invertebrates of the United States: Porifera to Crustacea, 4th edn. John Wiley and Sons, Inc., New York

    Google Scholar 

  • Smith K, Fernando CH (1978) A Guide to Freshwater Calanoid and Cyclopoid Copepod Crustacea of Ontario. Department of Biology, University of Waterloo

  • Stemberger RS (1979) A Guide to Rotifers of the Laurentian Great Lakes. EPA-600/4-79-021

  • Tamplin ML, Gauzens AL, Huq A, Sack DA, Colwell RR (1990) Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl Environ Microb 56(6):1977–1980

    CAS  Google Scholar 

  • Tremel B, Frey SL, Yan ND, Somers KM, Pawson TW (2000) Habitat specificity of littoral Chydoridae (Crustacea, Branchiopoda, Anomopoda) in Plastic Lake, Ontario, Canada. Hydrobiologia 432(1–3):195–205

    Article  Google Scholar 

  • Vadeboncoeur Y, McIntyre PB, Vander Zanden MJ (2011) Borders of biodiversity: life at the edge of the world’s large lakes. Bioscience 61(7):526–537

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern Applied Statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Walseng B, Hessen DO, Halvorsen G, Schartau AK (2006) Major contribution of littoral crustaceans to zooplankton species richness in lakes. Limnol Oceanogr 51(6):2600–2606

    Article  Google Scholar 

  • Ward J (1955) A description of new zooplankton counter. Q J Microsc Sci 96:371–373

    Google Scholar 

Download references

Acknowledgments

El-Amine Mimouni, Ph.D. candidate, is supported by the collaborative research funds of the GRIL (Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique) and the CSBQ (Centre de la Science de la Biodiversité du Québec). We thank Pierre Legendre for several engaging discussion regarding the statistical aspects and for comments on an earlier draft of the manuscript. We also thank students and research fellows who participated to field sampling (Adrien André, Anne-Hélène Lejeune, Joseph Nzieleu Tchapgnouo, Ginette Méthot, Lama Aldamman) or laboratory analysis (Louise Cloutier, Maryse Robert, Nicolas Dedieu). The research was supported by grants to BPA and BEB through the CRSNG (Conseil de Recherche en Sciences Naturelles et en Génie) and the FQRNT (Fonds de Recherche du Québec – Nature et Technologies).

Conflicts of interests

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El-Amine Mimouni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 65.9 kb)

ESM 2

(DOCX 52.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mimouni, EA., Pinel-Alloul, B. & Beisner, B.E. Assessing aquatic biodiversity of zooplankton communities in an urban landscape. Urban Ecosyst 18, 1353–1372 (2015). https://doi.org/10.1007/s11252-015-0457-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-015-0457-5

Keywords

Navigation