Skip to main content
Log in

The impact of procedural and epistemological knowledge on conceptual understanding: the case of density and floating–sinking phenomena

  • Published:
Instructional Science Aims and scope Submit manuscript

Abstract

The aim of the present study was twofold. First, we aimed to replicate the findings of previous studies which had showed a substantial improvement on procedural and epistemological knowledge after direct instruction and their maintenance in time. Second, we aimed to examine the dynamic relationships of the procedural (control of variables strategy) and epistemological (nature of models) knowledge and the conceptual understanding of interrelated phenomena (floating–sinking) and subordinate abstract concepts (density) that have been developed to explain these phenomena across the learning process. A five-unit teaching learning sequence was organized and implemented in three 5th grade (N = 53) science classes. Participants answered at three time points—before, immediately following and 7 months after the implementation—in a questionnaire involving eight questions concerning the four abovementioned teaching and learning content areas. The collected data was used to test, with Path analysis, the validity of the theoretically designed model that depicted the causal relationships between the four areas. The inquiry-based activities were successful in bringing students’ ideas closer to the scientific knowledge. In addition, the model fitted in well with our data. So, the instruction of procedural and epistemological knowledge was crucial in the conceptual understanding of density in the frame of floating–sinking interpretation. In addition, understanding of the concept of density as a property of materials immediately following the implementation contributes significantly to students’ interpretations of floating–sinking phenomena even 7 months later.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183–198. doi:10.1016/j.learninstruc.2006.03.001.

    Article  Google Scholar 

  • Bentler, P. M. (2003). EQS 6.1 for Windows [Computer software]. Encino, CA: Multivariate, Software.

    Google Scholar 

  • Boudreaux, A., Shaffer, P., Heron, P., & McDermott, L. (2008). Student understanding of control of variables: Deciding whether or not a variable influences the behavior of a system. American Journal of Physics, 76, 163–170. doi:10.1119/1.2805235.

    Article  Google Scholar 

  • Byrne, B. M. (1994). Structural equation modeling with EQS and EQS/Windows. Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  • Chen, Z., & Klahr, D. (1999). All other things being equal: Acquisition and transfer of the control of variables strategy. Child Development, 70, 1098–1120. doi:10.1111/1467-8624.00081.

    Article  Google Scholar 

  • Chi, M. T. H. (2008). Three types of conceptual change: Belief revision, mental model transformation and categorical shift. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 61–82). New York, NY: Routledge.

    Google Scholar 

  • Chi, M. T. H., Slotta, J. D., & De Leeuw, N. D. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27–43. doi:10.1016/0959-4752(94)90017-5.

    Article  Google Scholar 

  • Dean, D, Jr, & Kuhn, D. (2007). Direct instruction vs. discovery: The long view. Science Education, 91, 384–397. doi:10.1002/sce.20194.

    Article  Google Scholar 

  • Demetriou, A. (2003). Mind, self, and personality: Dynamic interactions from late childhood to early adulthood. Journal of Adult Development, 10(3), 151–171. doi:10.1023/A:1023462229730.

    Article  Google Scholar 

  • Demetriou, A., Spanoudis, G., & Mouyi, A. (2010). A three-level model of the developing mind: Functional and neuronal substantiation and educational implications. In M. Ferrari & L. Vuletic (Eds.), The developmental relations among mind, brain and education (pp. 9–48). New York, NY: Springer.

    Chapter  Google Scholar 

  • Fassoulopoulos, G., Kariotoglou, P., & Koumaras, P. (2003). Consistent and inconsistent pupil’s reasoning about intensive quantities: The case of density and pressure. Research in Science Education, 33, 71–87. doi:10.1023/A:1023658419034.

    Article  Google Scholar 

  • Gentner, D., Loewenstein, J., & Thompson, L. (2003). Learning and transfer: A general role for analogical encoding. Journal of Educational Psychology, 95, 393–408. doi:10.1037/0022-0663.95.2.393.

    Article  Google Scholar 

  • Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1–38. doi:10.1016/0010-0285(83)90002-6.

    Article  Google Scholar 

  • Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28, 799–822. doi:10.1002/tea.3660280907.

    Article  Google Scholar 

  • Hardy, I., Jonen, A., Moeller, K., & Stern, E. (2006). Effects of instructional support within constructivist learning environments for elementary school students’ understanding of “floating and sinking”. Journal of Educational Psychology, 98, 307–326. doi:10.1037/0022-0663.98.2.307.

    Article  Google Scholar 

  • Havu-Nuutinen, S. (2005). Examining young children’s conceptual change process in floating and sinking from a social constructivist prospective. International Journal of Science Education, 27, 259–279. doi:10.1080/0950069042000243736.

    Article  Google Scholar 

  • Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.

    Article  Google Scholar 

  • Jaakkola, T., Nurmi, S., & Lehtinen, E. (2010). Conceptual change in learning electricity. Using virtual and concrete external representations simultaneously. In L. Verschaffel, et al. (Eds.), Use of representations in reasoning and problem solving (pp. 36–54). New York, NY: Routledge.

    Google Scholar 

  • Justi, S. R., & Gilbert, K. J. (2002). Science teachers’ knowledge about and attitudes towards the use of models and modelling in learning science. International Journal of Science Education, 24, 1273–1292. doi:10.1080/09500690210163198.

    Article  Google Scholar 

  • Kawasaki, K., Herrenkohl, L., & Yeary, S. (2004). Theory Building and modeling in a sinking and floating unit: A case study of third and fourth grade students’ developing epistemologies of science. International Journal of Science Education, 26, 1299–1324. doi:10.1080/0950069042000177226.

    Article  Google Scholar 

  • Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction. Psychological Science, 15, 661–667. doi:10.1111/j.0956-7976.2004.00737.x.

    Article  Google Scholar 

  • Klopfer, L., Champagne, A., & Chaiklin, S. (1992). The Ubiquitous quantities: Explorations that inform the design of instruction on the physical properties of matter. Science Education, 76, 597–614.

    Article  Google Scholar 

  • Kuhn, D. (2007). Is direct instruction an answer to the right question? Educational psychologist, 42, 109–113. doi:10.1080/00461520701263376.

    Article  Google Scholar 

  • Kuhn, D., Iordanou, K., Pease, M., & Wirkala, C. (2008). Beyond control of variables: What needs to develop to achieve skilled scientific thinking? Cognitive Development, 23, 435–451. doi:10.1016/j.cogdev.2008.09.006.

    Article  Google Scholar 

  • Kurtz, K. J., Miao, C. H., & Gentner, D. (2001). Learning by analogical bootstrapping. The Journal of the Learning Sciences, 10, 417–446. doi:10.1207/S15327809JLS1004new_2.

    Article  Google Scholar 

  • Lorch, R. F., Lorch, E. P., Calderhead, W. J., Dunlap, E. E., Hodell, E. C., & Freer, B. D. (2010). Learning the control of variables strategy in higher and lower achieving classrooms: Contributions of explicit instruction and experimentation. Journal of Educational Psychology, 102, 90–101. doi:10.1037/a0017972.

    Article  Google Scholar 

  • Loukomies, A., Pnevmatikos, D., Lavonen, J., Spyrtou, A., Byman, R., Kariotoglou, P., & Juuti, K. (2013). Promoting students’ interest and motivation towards science learning: The role of personal need and motivation orientations. Research in Science Education, 43, 2517–2539. doi:10.1007/s11165-013-9370-1.

    Article  Google Scholar 

  • Méheut, M., & Psillos, D. (2004). Teaching–learning sequences: Aims and tools for science education research. International Journal of Science Education, 26, 515–535. doi:10.1080/09500690310001614762.

    Article  Google Scholar 

  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a conceptual framework for new K-12 science education standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.

  • Nersessian, N. (2008). Model-based reasoning in scientific practice. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and implementation (pp. 57–79). Rotterdam: Sense Publishers.

    Google Scholar 

  • Perkins, D. N., & Grotzer, T. A. (2005). Dimensions of causal understanding: The role of complex causal models in students’ understanding of science. Studies in Science Education, 41, 117–166. doi:10.1080/03057260508560216.

    Article  Google Scholar 

  • Petrosino, A. (2003). Commentary: A framework for supporting learning and teaching about mathematical and scientific models. Contemporary Issues in Technology and Teacher Education, 3, 288–299. http://www.editlib.org/p/19912/.

  • Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93, 346–362. doi:10.1037//0022-0663.93.2.346.

    Article  Google Scholar 

  • Rosch, E. (1999). Principles of categorization. In E. Margolis & S. Laurence (Eds.), Concepts: Core readings (pp. 189–206). Cambridge, MA: MIT Press.

    Google Scholar 

  • Rowell, J., & Dawson, C. (1977). Teaching about floating and sinking: An attempt to link cognitive psychology with classroom practice. Science Education, 61, 245–253. doi:10.1002/sce.3730610215.

    Article  Google Scholar 

  • Saari, H., & Viiri, J. (2003). A research-based teaching sequence for teaching the concept of modelling to seventh-grade students. International Journal of Science Education, 25, 1333–1352. doi:10.1080/0950069032000052081.

    Article  Google Scholar 

  • Schneider, M., Rittle-Johnson, B., & Star, J. R. (2011). Relations among conceptual knowledge, procedural knowledge, and procedural flexibility in two samples differing in prior knowledge. Developmental Psychology, 47, 1525–1538. doi:10.1037/a0024997.

    Article  Google Scholar 

  • Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46, 632–654. doi:10.1002/tea.20311.

    Article  Google Scholar 

  • Schwarz, C., & White, B. (2005). Metamodeling knowledge: Developing students’ understanding of scientific modeling. Cognition and Instruction, 23, 165–205. doi:10.1207/s1532690xci2302_1.

    Article  Google Scholar 

  • Smith, C., Snir, J., & Grosslight, L. (1992). Using conceptual models to facilitate conceptual change: The case of weight-density differentiation. Cognition and Instruction, 9, 221–283. doi:10.1207/s1532690xci0903_3.

    Article  Google Scholar 

  • Snir, J. (1991). Sink or float—What do the Experts think? The historical development of explanations for floatation. Science Education, 75, 595–609. doi:10.1002/sce.3730750508.

    Article  Google Scholar 

  • Spyrtou, A., Zoupidis, A., & Kariotoglou, P. (2008). The design and development of an ICT Enhanced Module concerning density as a property of materials applied in floating-sinking phenomena. Ιn C. P. Constantinou & N. Papadouris (Eds.), GIREP international conference, physics curriculum design, development and validation (pp. 391–407). Selected Papers. http://tinyurl.com/l29my7a.

  • Strand-Cary, M., & Klahr, D. (2008). Developing elementary science skills: Instructional effectiveness and path independence. Cognitive Development, 23, 488–511. doi:10.1016/j.cogdev.2008.09.005.

    Article  Google Scholar 

  • Toth, E. E., Klahr, D., & Chen, Z. (2000). Bridging research and practice: A research-based classroom intervention for teaching experimentation skills to elementary school children. Cognition and Instruction, 18, 423–459. doi:10.1207/S1532690XCI1804_1.

    Article  Google Scholar 

  • Treagust, D. F., Chittleborough, G., & Mamiala, L. T. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24, 357–368. doi:10.1080/09500690110066485.

    Article  Google Scholar 

  • Vosniadou, S. (2010). Instructional considerations in the use of external representations. In L. Verschaffel, et al. (Eds.), Use of representations in reasoning and problem solving (pp. 36–54). New York, NY: Routledge.

    Google Scholar 

  • Vosniadou, S. (2013). Model based reasoning and the learning of counter-intuitive science concepts. Infancia y Aprendizaje, 36, 5–33. doi:10.1174/021037013804826519.

    Article  Google Scholar 

  • Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to the problem of conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 205–239). New York, NY: Routledge.

    Google Scholar 

  • Wagensveld, B., Segers, E., Kleemans, T., & Verhoeven, L. (2014). Child predictors of learning to control variables via instruction or self-discovery. Instructional Science, 43, 365–379. doi:10.1007/s11251-014-9334-5.

    Article  Google Scholar 

  • Wiser, M., & Smith, C. (2008). Learning and teaching about matter in grades K-8: When should the atomic-molecular theory be introduced? In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 205–239). New York, NY: Routledge.

    Google Scholar 

  • Zohar, A., & Ben David, A. (2008). Explicit teaching of meta-strategic knowledge in authentic classroom situations. Metacognition Learning, 3, 59–82. doi:10.1007/s11409-007-9019-4.

    Article  Google Scholar 

  • Zoupidis, Α., Pnevmatikos, D., Spyrtou, A., & Kariotoglou, P. (2010). The gradual approach of the nature and role of models as means to enhance 5th grade students' epistemological awareness. In G. Cakmakci & M. F. Tasar (Eds.), Contemporary science education research: Learning and assessment (pp. 415–423). Ankara: Pegem Akademi.

    Google Scholar 

  • Zoupidis, A., Pnevmatikos, D., Spyrtou, A., & Kariotoglou, P. (2012). Causal relational reasoning of 5th graders using density in explaining floating-sinking phenomena. In C. Bruguière, A. Tiberghien & P. Clément (Eds.), E-book proceedings of the ESERA 2011 conference, science learning and citizenship. Part 1 (co-Eds. Roser Pinto and Kai Niebert) (pp. 104–109). Lyon: European Science Education Research Association. http://www.esera.org/media/ebook/strand1/ebook-esera2011_zoupidis-01.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Zoupidis.

Appendix

Appendix

figure a
figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoupidis, A., Pnevmatikos, D., Spyrtou, A. et al. The impact of procedural and epistemological knowledge on conceptual understanding: the case of density and floating–sinking phenomena. Instr Sci 44, 315–334 (2016). https://doi.org/10.1007/s11251-016-9375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11251-016-9375-z

Keywords

Navigation