Skip to main content
Log in

Population genetic structure and maternal lineage of South African crossbred Nguni cattle using the cytochrome b gene in mtDNA

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The Nguni cattle breed predominates South Africa and is endowed with traits favourable against environmental stressors such as heat stress and resistance to diseases. Interventions to improve production have led to the erosion of the genetic integrity of local breeds and the introduction of exotic breeds has proved ineffective as they fail to perform well due to different climatic conditions and production systems. In this study, the genetic structure and genetic lineage of Nguni crossbreds from 6 populations were assessed using the mitochondrial cytochrome b gene. Twelve polymorphic sites were detected resulting in 11 haplotypes with haplotype and nucleotide diversities of 0.550 ± 0.135 and 0.0019 ± 0.0011, respectively. Only 2 of the 6 populations displayed recent population expansion events, whereas the majority adhered to neutral evolution. The basal haplotype contained approximately 60% of the studied populations and there were four unique haplotypes that were revealed. A possible Nguni descript haplotype was uncovered, and this haplotype was found in all populations but was however devoid of individuals from around the world. The genetic structure of the populations was rather low (average pairwise FST = 0.066 and Slatkins FST = 0.094), and approximately 96% of the total genetic variation was accounted for by differences within populations. Phylogenetic analyses supported the clustering of all the samples within the Bos taurus clade and no Bos indicus haplotype was detected. Furthermore, no intermediate haplotype of taurine and indicine was detected. Overall, the maternal lineage of the crossbreds points to a taurine origin and the low genetic diversity depicts the retention of the Nguni genetic pool and possibly its superior adaptive traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bailey, J.F., Richards, M.B., Macaulay, V.A., Colson, I.B., James I.T., Bradley, D.G., Hedges, R.E. and Sykes, B.C., 1996. Ancient DNA suggests a recent expansion of European cattle from a diverse wild progenitor species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 263, 1467-1473.

    CAS  PubMed  Google Scholar 

  • Bandelt, H.J., Forster, P. and Röhl, A., 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular biology and evolution, 16, 37-48.

    CAS  PubMed  Google Scholar 

  • Bayer, W., Alcock, R. and Gilles, P., 2004, October. Going backwards?–moving forward?–Nguni cattle in communal Kwazulu-Natal. In Deutscher Tropentag. Humboldt-Universitätzu, Berlin: Rural Poverty Reduction through Research for Development and Transformation.

  • Bester, J., Matjuda, L.E., Rust, J.M. and Fourie, H.J., 2003. The Nguni: a case study. Vilakati, D., Morupisi, C., Setshwaelo, L., Wollny, C., von Lossau, A. and Drews, A. (eds), 45-68.

  • Bradley, D.G., MacHugh, D.E., Cunningham, P. and Loftus, R.T., 1996. Mitochondrial diversity and the origins of African and European cattle. Proceedings of the National Academy of Sciences, 93, 5131-5135.

    CAS  Google Scholar 

  • Cai, X., Chen, H., Lei, C., Wang, S., Xue, K. and Zhang, B., 2007. mtDNA diversity and genetic lineages of eighteen cattle breeds from Bos taurus and Bos indicus in China. Genetica, 131, 175-183.

    PubMed  Google Scholar 

  • Chimonyo, M., Kusina, N.T., Hamudikuwanda, H. and Nyoni, O., 1999. A survey on land use and usage of cattle for draught in a semi-arid environment. Journal of Applied Science in Southern Africa, 5, 111-122.

    Google Scholar 

  • Cortés, O., Tupac-Yupanqui, I., Dunner, S., García-Atance, M.A., García, D., Fernández, J. and Canón, J., 2008. Ancestral matrilineages and mitochondrial DNA diversity of the Lidia cattle breed. Animal Genetics, 39, 649-954.

    PubMed  Google Scholar 

  • Dadi, H., Tibbo, M., Takahashi, Y., Nomura, K., Hanada, H. and Amano, T., 2009. Variation in mitochondrial DNA and maternal genetic ancestry of Ethiopian cattle populations. Animal genetics, 40, 556-559.

    CAS  PubMed  Google Scholar 

  • Excoffier, L., 2004. Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite‐island model. Molecular Ecology, 13, 853-864.

    CAS  PubMed  Google Scholar 

  • Excoffier, L. and Lischer, H.E., 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular ecology resources, 10, 564-567.

    PubMed  Google Scholar 

  • Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783-791.

    PubMed  Google Scholar 

  • Franke, D.E., 1980. Breed and heterosis effects of American Zebu cattle. Journal of Animal Science, 50, 1206-1214.

    CAS  PubMed  Google Scholar 

  • Freeman, A.R., Bradley, D.G., Nagda, S., Gibson, J.P. and Hanotte, O., 2006. Combination of multiple microsatellite data sets to investigate genetic diversity and admixture of domestic cattle. Animal Genetics, 37, 1-9.

    CAS  PubMed  Google Scholar 

  • Fu, Y.X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915-925.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller, A., 2006. The sacred hide of Nguni; the rise of an ancient breed of cattle is giving South Africa new opportunity. Miracles that are changing the Nation. Industrial Development Corporation (IDC) Newsletter, 34.

  • Govignon-Gion, A., Dassonneville, R., Baloche, G. and Ducrocq, V., 2016. Multiple trait genetic evaluation of clinical mastitis in three dairy cattle breeds. Animal, 10, 558-565.

    CAS  PubMed  Google Scholar 

  • Groeneveld, L.F., Lenstra, J.A., Eding, H., Toro, M.A., Scherf, B., Pilling, D., Negrini, R., Finlay, E.K., Jianlin, H., Groeneveld, E. and Weigend, S., 2010. Genetic diversity in farm animals–a review. Animal Genetics, 41, 6-31.

    PubMed  Google Scholar 

  • Hanotte, O., Tawah, C.L., Bradley, D.G., Okomo, M., Verjee, Y., Ochieng, J. and Rege, J.E.O., 2000. Geographic distribution and frequency of a taurine Bos taurus and an indicine Bos indicus Y specific allele amongst sub‐Saharan African cattle breeds. Molecular ecology, 9, 387-396.

    CAS  PubMed  Google Scholar 

  • Hanotte, O., Bradley, D.G., Ochieng, J.W., Verjee, Y., Hill, E.W. and Rege, J.E.O., 2002. African pastoralism: genetic imprints of origins and migrations. Science, 296, 336-339.

    CAS  PubMed  Google Scholar 

  • Harpending, H.C., Sherry, S.T., Rogers, A.R. and Stoneking, M., 1993. The genetic structure of ancient human populations. Current Anthropology, 34, 483-496.

    Google Scholar 

  • Hassan, A.A.M., Balabel, E.A., Oraby, H.A.S. and Darwish, S.A., 2018. Buffalo species identification and delineation using genetic barcoding markers. Journal of Genetic Engineering and Biotechnology, 16, 499-505.

    PubMed  PubMed Central  Google Scholar 

  • Henkes, L.E., Silva Jr, W.A., Moraes, J.C.F., Weimer, T.A., 2005. Mitochondrial control region genetic diversity and maternal ancestry of a Brangus-Ibage cattle population. Genetics and Molecular Biology, 28, 60-66.

    CAS  Google Scholar 

  • Heringstad, B., Klemetsdal, G. and Steine, T., 2003. Selection responses for clinical mastitis and protein yield in two Norwegian dairy cattle selection experiments. Journal of Dairy Science, 86, 2990-2999.

    CAS  PubMed  Google Scholar 

  • Hinrichs, D., Stamer, E., Junge, W. and Kalm, E., 2005. Genetic analyses of mastitis data using animal threshold models and genetic correlation with production traits. Journal of Dairy Science, 88, 2260-2268.

    CAS  PubMed  Google Scholar 

  • Horsburgh, K.A., Prost, S., Gosling, A., Stanton, J.A., Rand, C. and Matisoo-Smith, E.A., 2013. The genetic diversity of the Nguni breed of African Cattle (Bos spp.): complete mitochondrial genomes of haplogroup T1. PloS one, 8, p.e71956.

  • Huffman, T.N., 2007. Handbook to the Iron Age. University of KwaZulu-Natal Press.

  • International Livestock Research Institute, 2009. Climate, Livestock and Poverty: Challenges at the Interface. Corporate report 2008-9.

  • Jönsson, R., 2015. Estimation of heterosis and performance of crossbred Swedish dairy cows.

  • Khombe, C.T., 2002. Genetic improvement of indigenous cattle breeds in Zimbabwe: A case study of the Mashona group breeding scheme.

  • Lai, S.J., Liu, Y.P., Liu, Y.X., Li, X.W. and Yao, Y.G., 2006. Genetic diversity and origin of Chinese cattle revealed by mtDNA D-loop sequence variation. Molecular Phylogenetics and Evolution, 38, 146-154.

    CAS  PubMed  Google Scholar 

  • Leigh, J.W. and Bryant, D., 2015. Popart: full‐feature software for haplotype network construction. Methods in Ecology and Evolution, 6, 1110-1116.

    Google Scholar 

  • Lembeye, F., López-Villalobos, N., Burke, J.L., Davis, S.R., Richardson, J., Sneddon, N.W. and Donaghy, D.J., 2016. Comparative performance in Holstein-Friesian, Jersey and crossbred cows milked once daily under a pasture-based system in New Zealand. New Zealand Journal of Agricultural Research, 59, 351-362.

    Google Scholar 

  • Lenstra, J.A., Groeneveld, L.F., Eding, H., Kantanen, J., Williams, J.L., Taberlet, P., Nicolazzi, E.L., Sölkner, J., Simianer, H., Ciani, E. and Garcia, J.F., 2012. Molecular tools and analytical approaches for the characterization of farm animal genetic diversity. Animal Genetics, 43, 483-502.

    CAS  PubMed  Google Scholar 

  • Lenstra, J., Ajmone-Marsan, P., Beja-Pereira, A., Bollongino, R., Bradley, D., Colli, L., De Gaetano, A., Edwards, C., Felius, M., Ferretti, L. and Ginja, C., 2014. Meta-analysis of mitochondrial DNA reveals several population bottlenecks during worldwide migrations of cattle. Diversity, 6, 178-187.

    Google Scholar 

  • Li, M.H., Zerabruk, M., Vangen, O., Olsaker, I. and Kantanen, J., 2007. Reduced genetic structure of north Ethiopian cattle revealed by Y-chromosome analysis. Heredity, 98, p.214.

  • Librado, P. and Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451-1452.

    CAS  PubMed  Google Scholar 

  • Ma, G., Chang, H., Li, S., Chen, H., Ji, D., Geng, R., Chang, C. and Li, Y., 2007. Phylogenetic relationships and status quo of colonies for gayal based on analysis of cytochrome b gene partial sequences. Journal of Genetics and Genomics, 34, 413-419.

    CAS  PubMed  Google Scholar 

  • MacHugh, D.E., Shriver, M.D., Loftus, R.T., Cunningham, P. and Bradley, D.G., 1997. Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics, 146, 1071-1086.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madilindi, M.A., Banga, C.B., Bhebhe, E., Sanarana, Y.P., Nxumalo, K.S., Taela, M.G. and Mapholi, N.O., 2019. Genetic differentiation and population structure of four Mozambican indigenous cattle populations. Livestock Research for Rural Development, 31.

  • Mapekula, M., Chimonyo, M., Mapiye, C. and Dzama, K., 2011. Fatty acid, amino acid and mineral composition of milk from Nguni and local crossbred cows in South Africa. Journal of food Composition and Analysis, 2, 529-536.

    Google Scholar 

  • Mapiye, C., Chimonyo, M., Muchenje, V., Dzama, K., Marufu, M.C. and Raats, J.G., 2007. Potential for value-addition of Nguni cattle products in the communal areas of South Africa: a review. African Journal of Agricultural Research, 2, 488-495.

    Google Scholar 

  • Mapiye, C., Chimonyo, M., Dzama, K., Raats, J.G. and Mapekula, M., 2009. Opportunities for improving Nguni cattle production in the smallholder farming systems of South Africa. Livestock Science, 124, 196-204.

    Google Scholar 

  • Marufu, M.C., Chimonyo, M., Dzama, K. and Mapiye, C., 2010. Seroprevalence of tick-borne diseases in communal cattle reared on sweet and sour rangelands in a semi-arid area of South Africa. The Veterinary Journal, 184, 71-76.

    PubMed  Google Scholar 

  • Marufu, M.C., Qokweni, L., Chimonyo, M. and Dzama, K., 2011. Relationships between tick counts and coat characteristics in Nguni and Bonsmara cattle reared on semiarid rangelands in South Africa. Ticks and Tick-borne Diseases, 2, 172-177.

    PubMed  Google Scholar 

  • Mitchell, P., 2002. The archaeology of southern Africa. Cambridge University Press.

  • Moyo, S., 1996. The productivity of indigenous and exotic beef breeds and their crosses at Matopos, Zimbabwe. PhD thesis. Department of Animal and Wildlife Sciences, University of Pretoria, South Africa.

  • Muchenje, V., Dzama, K., Chimonyo, M., Raats, J.G. and Strydom, P.E., 2008a. Tick susceptibility and its effects on growth performance and carcass characteristics of Nguni, Bonsmara and Angus steers raised on natural pasture. Animal, 2, 298-304.

    CAS  PubMed  Google Scholar 

  • Muchenje, V., Dzama, K., Chimonyo, M., Raats, J.G. and Strydom, P.E., 2008b. Meat quality of Nguni, Bonsmara and Aberdeen Angus steers raised on natural pasture in the Eastern Cape, South Africa. Meat Science, 79, 20-28.

    CAS  PubMed  Google Scholar 

  • Musemwa, L., Mushunje, A., Chimonyo, M., Fraser, G., Mapiye, C. and Muchenje, V., 2008. Nguni cattle marketing constraints and opportunities in the communal areas of South Africa. African Journal of Agricultural Research, 3, 239-245.

    Google Scholar 

  • Musemwa, L., Mushunje, A., Chimonyo, M. and Mapiye, C., 2010. Low cattle market off-take rates in communal production systems of South Africa: Causes and mitigation strategies. Journal of Sustainable Development in Africa, 12, 209-226.

    Google Scholar 

  • Mwai, O., Hanotte, O., Kwon, Y.J. and Cho, S., 2015. African indigenous cattle: unique genetic resources in a rapidly changing world. Asian-Australasian Journal of Animal Sciences, 28, 911.

    PubMed  PubMed Central  Google Scholar 

  • Nguni Cattle Breeders Society. Gallery. Accessed 20 September 2019. http://www.nguni.co.za/Gallery-General.htm

  • Nie, L., Yu, Y., Zhang, X.Q., Yang, G.F., Wen, J.K. and Zhang, Y.P., 1999. Genetic diversity of cattle in South China as revealed by blood protein electrophoresis. Biochemical Genetics, 37, 257-265.

    CAS  PubMed  Google Scholar 

  • Nqeno, N., Chimonyo, M. and Mapiye, C., 2011. Farmers’ perceptions of the causes of low reproductive performance in cows kept under low-input communal production systems in South Africa. Tropical Animal Health and Production, 43, 315-321.

    PubMed  Google Scholar 

  • Penasa, M., López‐Villalobos, N., Evans, R.D., Cromie, A.R., Dal Zotto, R. and Cassandro, M., 2010. Crossbreeding effects on milk yield traits and calving interval in spring‐calving dairy cows. Journal of Animal Breeding and Genetics, 127, 300-307.

    CAS  PubMed  Google Scholar 

  • Plug, I. and Voigt, E.A., 1985. Archaeozoological studies of Iron Age communities in southern Africa. Advances in World Archaeology, 4, 189-238.

    Google Scholar 

  • Rambaut, A., Suchard, M.A., Xie, D. and Drummond, A.J., 2014. Tracer 1.6. URL: http://beast.bio.ed.ac.uk/tracer.

  • Ramsay, K.A., 1988. Phenotypic selection of the Nguni cattle in different environments in southern Africa. Department of Development Aid. South Africa.

    Google Scholar 

  • Rege, J.E.O. and Tawah, C.L., 1999. The state of African cattle genetic resources II. Geographical distribution, characteristics and uses of present-day breeds and strains. Animal Genetic Resources/Resources génétiques animales/Recursos genéticos animales, 26, 1-25.

    Google Scholar 

  • Reist-Marti, S.B., 2004. Analysis of methods for efficient biodiversity conservation with focus on African cattle breeds (Doctoral dissertation, ETH Zurich).

  • Rogers, A.R. and Harpending, H., 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552-569.

    CAS  PubMed  Google Scholar 

  • Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. and Huelsenbeck, J.P., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539-542.

    PubMed  PubMed Central  Google Scholar 

  • Rosli, M.K., Zakaria, S.S., Syed-Shabthar, S.M.F., Zainal, Z.Z., Shukor, M.N., Mahani, M.C., Abas-Mazni, O. and Md-Zain, B.M., 2011. Phylogenetic relationships of Malayan gaur with other species of the genus Bos based on cytochrome b gene DNA sequences. Genetics and Molecular Research, 10, 482-493.

    CAS  PubMed  Google Scholar 

  • Salim, B., Taha, K.M., Hanotte, O. and Mwacharo, J.M., 2014. Historical demographic profiles and genetic variation of the East African Butana and Kenana indigenous dairy zebu cattle. Animal Genetics, 45, 782-790.

    CAS  PubMed  Google Scholar 

  • Scheu, A., Powell, A., Bollongino, R., Vigne, J.D., Tresset, A., Çakırlar, C., Benecke, N. and Burger, J., 2015. The genetic prehistory of domesticated cattle from their origin to the spread across Europe. BMC Genetics, 16, 54.

    PubMed  PubMed Central  Google Scholar 

  • Schoeman, S.J., 1989. Recent research into the production potential of indigenous cattle with special reference to the Sanga. South African Journal of Animal Science, 19, 55-61.

    Google Scholar 

  • Scholtz, M.M., 1988. Selection possibilities of hardy beef breeds in Africa: The Nguni example. In 3. Congres Mondial de Reproduction et Selection des Ovins et Bovins a Viande, Paris (France), 19-23 Jun 1988. INRA.

  • Scholtz, M.M., 2005. History and background of the Nguni in South Africa. Nguni Journal, 7-9.

  • Scholtz, M.M., Bester, J., Mamabolo, J.M. and Ramsay, K.A., 2008. Results of the national cattle survey undertaken in South Africa, with emphasis on beef. Applied Animal Husbandry & Rural Development, 1, 1-9.

    Google Scholar 

  • Schwarz, G., 1978. Estimating the dimension of a model. The Annals of Statistics, 6, 461-464.

    Google Scholar 

  • Sharma, R., Kishore, A., Mukesh, M., Ahlawat, S., Maitra, A., Pandey, A.K. and Tantia, M.S., 2015. Genetic diversity and relationship of Indian cattle inferred from microsatellite and mitochondrial DNA markers. BMC Genetics, 16, 73.

    PubMed  PubMed Central  Google Scholar 

  • Singh, N., Jayaswal, P.K., Panda, K., Mandal, P., Kumar, V., Singh, B., Mishra, S., Singh, Y., Singh, R., Rai, V. and Gupta, A., 2015. Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Scientific Reports, 5, 11600.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slatkin, M. and Hudson, R.R., 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129, 555-562.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonstegard, T.S., Carlson, D., Lancto, C. and Fahrenkrug, S.C., 2016. Precision animal breeding as a sustainable, non-GMO solution for improving animal production and welfare. In Biennial Conf Australian Society of Animal Production, 31, 316-317.

  • Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585-595.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30, 2725-2729.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tarekegn, G.M., Ji, X.Y., Bai, X., Liu, B., Zhang, W., Birungi, J., Djikeng, A. and Tesfaye, K., 2018. Variations in mitochondrial cytochrome b region among Ethiopian indigenous cattle populations assert Bos taurus maternal origin and historical dynamics. Asian-Australasian Journal of Animal Sciences, 31, 1393.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Templeton, A.R., 2006. Population genetics and microevolutionary theory. John Wiley & Sons.

  • Thompson, J.D., Higgins, D.G. and Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673-4680.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Troy, C.S., MacHugh, D.E., Bailey, J.F., Magee, D.A., Loftus, R.T., Cunningham, P., Chamberlain, A.T., Sykes, B.C. and Bradley, D.G., 2001. Genetic evidence for Near-Eastern origins of European cattle. Nature, 410, 1088.

    CAS  PubMed  Google Scholar 

  • Turner, J.W., Farthing, B.R. and Robertson, G.L., 1968. Heterosis in reproductive performance of beef cows. Journal of Animal Science, 27, 336-338.

    CAS  PubMed  Google Scholar 

  • Verkaar, E.L., Nijman, I.J., Beeke, M., Hanekamp, E. and Lenstra, J.A., 2004. Maternal and paternal lineages in cross-breeding bovine species. Has wisent a hybrid origin? Molecular Biology and Evolution, 21, 1165-1170.

    CAS  PubMed  Google Scholar 

  • Wang, L., Geng, R. and Chang, H., 2009. Mitochondrial DNA diversity and origin of Chinese Leiqiong cattle. Journal of Animal and Veterinary Advances, 8, 1312-1315.

    CAS  Google Scholar 

  • Webb, E.C. and Mamabolo, M.J., 2004. Production and reproduction characteristics of South African indigenous goats in communal farming systems. South African Journal of Animal Science, 34.

  • You, Q., Yang, X., Peng, Z., Xu, L. and Wang, J., 2018. Development and applications of a high throughput genotyping tool for polyploid crops: single nucleotide polymorphism (SNP) array. Frontiers in Plant Science, 9, 104.

    PubMed  PubMed Central  Google Scholar 

  • Yu, Y., Nie, L., He, Z.Q., Wen, J.K., Jian, C.S. and Zhang, Y.P., 1999. Mitochondrial DNA variation in cattle of South China: origin and introgression. Animal Genetics, 30, 245-250.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would also like to acknowledge the various communities in KwaZulu-Natal province who supported us in numerous ways when we went to sample for cattle.

Funding

The authors would like to thank the South African National Research Foundation (NRF) for supporting this research though the Thuthuka Funding Instrument grant number TTK170411226583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Tendayi Zishiri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement on animal rights

Animal studies have been approved by the appropriate ethics committee of the University of KwaZulu- Natal (Reference: AREC/040/016M); therefore, they have been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.30 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mkize, L.S., Zishiri, O.T. Population genetic structure and maternal lineage of South African crossbred Nguni cattle using the cytochrome b gene in mtDNA. Trop Anim Health Prod 52, 2079–2089 (2020). https://doi.org/10.1007/s11250-020-02231-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-020-02231-8

Keywords

Navigation