Skip to main content
Log in

Transitions of Wear Characteristics for Rubber/Steel Seal Pairs During the Abrasive Wear Process

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Abrasive wear resulting from the microclastic rock is a common failure phenomenon in the drilling environment that often limits the sealing ability and the service life of seals. In this study, the friction and wear process of fluoro rubber (FKM) seals against 304 stainless steel (SS304) after one single entry of SiO2 abrasives were investigated. The influence of the changes in particle state on friction coefficient evolution, wear loss evolution, wear morphologies, and wear mechanisms were discussed in detail. The results indicate that the presence of abrasive particles dispersed between the sealing interfaces clearly improves the friction performance of the seal pairs and deteriorates the wear performance of the metal counterpart. The movement and breakage of particles after one single entering into the sealing interface were obtained. And on this basis, the stable wear process can be divided into three stages. In addition, the main causes contributed to this change of wear mechanisms are the random movement and process of continuous breakdown of abrasive particles. Furthermore, the transition of the wear mechanism that clearly describes the wearing behavior of the seal pairs under these abrasive wear conditions was identified. The results of this study enhanced our understanding of the abrasive wear degradation of rubber seal in practical drilling applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. He, Q., Xu, Z., Li, A., Wang, J., Zhang, J., Zhang, Y.: Study on hydrophobic properties of fluororubber prepared by template method under high temperature conditions. Colloids Surfaces A: Physicochem. Eng. Aspects. 612, 125837 (2021). https://doi.org/10.1016/j.colsurfa.2020.125837

    Article  CAS  Google Scholar 

  2. Hiltz, J.A.: Characterization of fluoroelastomers by various analytical techniques including pyrolysis gas chromatography/mass spectrometry. J. Anal. Appl. Pyrolysis. 109, 283–295 (2014). https://doi.org/10.1016/j.jaap.2013.06.008

    Article  CAS  Google Scholar 

  3. Shen, M., Li, B., Ji, D., Xiong, G., Zhao, L., Zhang, J., Zhang, Z.: Effect of particle size on tribological properties of rubber/steel seal pairs under contaminated water lubrication conditions. Tribol. Lett. 68, 40 (2020). https://doi.org/10.1007/s11249-020-1285-1

    Article  CAS  Google Scholar 

  4. Shen, M.-X., Dong, F., Zhang, Z.-X., Meng, X.-K., Peng, X.-D.: Effect of abrasive size on friction and wear characteristics of nitrile butadiene rubber (NBR) in two-body abrasion. Tribol. Int. 103, 1–11 (2016). https://doi.org/10.1016/j.triboint.2016.06.025

    Article  CAS  Google Scholar 

  5. Sui, P.C., Anderle, S.: Optimization of contact pressure profile for performance improvement of a rotary elastomeric seal operating in abrasive drilling environment. Wear 271, 2466–2470 (2011). https://doi.org/10.1016/j.wear.2011.02.021

    Article  CAS  Google Scholar 

  6. Feng, D., Shen, M., Peng, X., Meng, X.: Surface roughness effect on the friction and wear behaviour of acrylonitrile-butadiene rubber (NBR) under oil lubrication. Tribol. Lett. 65, 10 (2016). https://doi.org/10.1007/s11249-016-0793-5

    Article  CAS  Google Scholar 

  7. Gheisari, R., Bashandeh, K., Polycarpou, A.A.: Effect of surface polishing on the tribological performance of hard coatings under lubricated three-body abrasive conditions. Surf. Topogr. Metrol. Prop. 7, 45001 (2019). https://doi.org/10.1088/2051-672x/ab40ff

    Article  CAS  Google Scholar 

  8. Trezona, R.I., Allsopp, D.N., Hutchings, I.M.: Transitions between two-body and three-body abrasive wear: influence of test conditions in the microscale abrasive wear test. Wear (1999). https://doi.org/10.1016/S0043-1648(98)00358-5

    Article  Google Scholar 

  9. Stack, M.M., Mathew, M.: Micro-abrasion transitions of metallic materials. Wear. 255, 14–22 (2003). https://doi.org/10.1016/S0043-1648(03)00204-7

    Article  CAS  Google Scholar 

  10. Sebastiani, M., Mangione, V., De Felicis, D., Bemporad, E., Carassiti, F.: Wear mechanisms and in-service surface modifications of a Stellite 6B Co–Cr alloy. Wear. (2012). https://doi.org/10.1016/j.wear.2012.05.027

    Article  Google Scholar 

  11. Allsopp, D.N., Trezona, R.I., Hutchings, I.M.: The effects of ball surface condition in the micro-scale abrasive wear test. Tribol. Lett. 5, 259–264 (1998). https://doi.org/10.1023/A:1019178716408

    Article  Google Scholar 

  12. Allsopp, D.N., Hutchings, I.M.: Micro-scale abrasion and scratch response of PVD coatings at elevated temperatures. Wear. 251, 1308–1314 (2001). https://doi.org/10.1016/S0043-1648(01)00755-4

    Article  Google Scholar 

  13. Adachi, K., Hutchings, I.M.: Wear-mode mapping for the micro-scale abrasion test. Wear. 255, 23–29 (2003). https://doi.org/10.1016/S0043-1648(03)00073-5

    Article  CAS  Google Scholar 

  14. Qin, K., Zhou, Q., Zhang, K., Feng, Y., Zhang, T., Zheng, G.J., Xia, B., Liu, B.: Non-uniform abrasive particle size effects on friction characteristics of FKM O-ring seals under three-body abrasion. Tribol. Int. 136, 216–223 (2019). https://doi.org/10.1016/j.triboint.2019.03.051

    Article  Google Scholar 

  15. Nahvi, S.M., Shipway, P.H., McCartney, D.G.: Particle motion and modes of wear in the dry sand–rubber wheel abrasion test. Wear. 267, 2083–2091 (2009). https://doi.org/10.1016/j.wear.2009.08.013

    Article  CAS  Google Scholar 

  16. Thakare, M.R., Wharton, J.A., Wood, R.J.K., Menger, C.: Effect of abrasive particle size and the influence of microstructure on the wear mechanisms in wear-resistant materials. Wear. 276–277, 16–28 (2012). https://doi.org/10.1016/j.wear.2011.11.008

    Article  CAS  Google Scholar 

  17. Harsha, A.P., Tewari, U.S.: Two-body and three-body abrasive wear behaviour of polyaryletherketone composites. Polym. Test. 22, 403–418 (2003). https://doi.org/10.1016/S0142-9418(02)00121-6

    Article  CAS  Google Scholar 

  18. Kumar, S., Harsha, A.P., Goyal, H.S., Hussain, A.A., Wesley, S.B.: Three-body abrasive wear behaviour of aluminium alloys. Proceed. Instit. Mech. Eng. Part J: J. Eng. Tribol. 227, 328–338 (2012). https://doi.org/10.1177/1350650112463305

    Article  CAS  Google Scholar 

  19. Wirojanupatump, S., Shipway, P.H.: Abrasion of mild steel in wet and dry conditions with the rubber and steel wheel abrasion apparatus. Wear. 239, 91–101 (2000). https://doi.org/10.1016/S0043-1648(00)00310-0

    Article  CAS  Google Scholar 

  20. Zhang, S.W.: Advances in studies on rubber abrasion. Tribol. Int. 22, 143–148 (1989). https://doi.org/10.1016/0301-679X(89)90175-8

    Article  CAS  Google Scholar 

  21. Zhang, S.W.: Wet abrasion of polymers. Wear. 158, 1–13 (1992). https://doi.org/10.1016/0043-1648(92)90026-5

    Article  CAS  Google Scholar 

  22. Lv, X.R., Huo, X.Y., Qu, G.Z., Wang, S.J.: Research on friction and wear behavior of rubber in the mixture of crude oil with water. Appl. Mech. Mater. 300–301, 1254–1258 (2013). https://doi.org/10.4028/www.scientific.net/AMM.300-301.1254

    Article  Google Scholar 

  23. Zhang, Y.Z., Yan, M.Y., Wang, S.J., Lv, X.R.: The Research on the friction and wear behavior of FKM/nbr blends under water lubrication. Adv. Mater. Res. 750–752, 2150–2155 (2013). https://doi.org/10.4028/www.scientific.net/AMR.750-752.2150

    Article  Google Scholar 

  24. Flitney, B.: Positive lubrication rotary seals for down-hole/ abrasive applications. Seal. Technol. 2005, 8–11 (2005). https://doi.org/10.1016/S1350-4789(05)70831-X

    Article  Google Scholar 

  25. Ren, Y., Wang, N., Jiang, J., Zhu, J., Song, G., Chen, X.: The application of downhole vibration factor in drilling tool reliability big data analytics—a review. ASCE-ASME J Risk Uncert Engrg Sys. Part B Mech. Engrg. (2018). https://doi.org/10.1115/1.4040407

    Article  Google Scholar 

  26. Buck, G.S.: The role of hydraulic balance in mechanical pump seals. Texas A&M University, Gas Turbine Laboratories (1978). https://doi.org/10.21423/R1F671

    Google Scholar 

  27. Yang, J., Liu, Z., Cheng, Q., Liu, X., Deng, T.: The effect of wear on the frictional vibration suppression of water-lubricated rubber slat with/without surface texture. Wear. 426–427, 1304–1317 (2019). https://doi.org/10.1016/j.wear.2018.12.079

    Article  CAS  Google Scholar 

  28. Gawliński, M.: Friction and wear of elastomer seals. Arch. Civil Mech. Eng. 7, 57–67 (2007). https://doi.org/10.1016/S1644-9665(12)60225-8

    Article  Google Scholar 

  29. Shen, M., Zheng, J., Meng, X., Li, X., Peng, X.: Influence of Al2O3 particles on the friction and wear behaviors of nitrile rubber against 316L stainless steel. J. Zhejiang Univ-Sci. A. 16, 151–160 (2015). https://doi.org/10.1631/jzus.A1400217

    Article  CAS  Google Scholar 

  30. Gates, J.D.: Two-body and three-body abrasion: a critical discussion. Wear 214, 139–146 (1998). https://doi.org/10.1016/S0043-1648(97)00188-9

    Article  CAS  Google Scholar 

  31. Dwyer-Joyce, R.S., Sayles, R.S., Ioannides, E.: An investigation into the mechanisms of closed three-body abrasive wear. Wear 175, 133–142 (1994). https://doi.org/10.1016/0043-1648(94)90176-7

    Article  Google Scholar 

  32. Totten, G.E., Batchelor, A.W., Liang, H., Lim, C.Y.H., Scharf, T.W., Van Der Heide, E., Nolan, A., Lampman, S., Haws, W., Kubel, E., Lampman, H., Ryan, L., Leyda, J.H., Marquard, E., Sanders, B.: ASM handbook w volume 18 friction, lubrication, and wear technology volume editor division editors asm international staff editorial assistance. ASM Handbook. 18, 21 (2017)

    Google Scholar 

  33. Thomine, M., Degrange, J.-M., Vigier, G., Chazeau, L., Pelletier, J.-M., Kapsa, P., Guerbé, L., Dudragne, G.: Study of relations between viscoelasticity and tribological behaviour of filled elastomer for lip seal application. Tribol. Int. 40, 405–411 (2007). https://doi.org/10.1016/j.triboint.2005.09.033

    Article  CAS  Google Scholar 

  34. Zhang, K., Wang, D., Wang, Z., Guo, Y.: Material properties and tool performance of PCD reinforced WC matrix composites for hardbanding applications. Int. J. Refract Metal Hard Mater. 51, 146–152 (2015). https://doi.org/10.1016/j.ijrmhm.2015.03.011

    Article  CAS  Google Scholar 

  35. Zhang, K., Wang, Z., Wang, D., Guo, Y., Zhao, B.: Dry sliding friction and casing wear behavior of PCD reinforced WC matrix composites. Tribol. Int. 90, 84–95 (2015). https://doi.org/10.1016/j.triboint.2015.04.028

    Article  CAS  Google Scholar 

  36. Liang, H., Fukahori, Y., Thomas, A.G., Busfield, J.J.C.: Rubber abrasion at steady state. Wear 266, 288–296 (2009). https://doi.org/10.1016/j.wear.2008.07.006

    Article  CAS  Google Scholar 

  37. Schallamach, A.: How does rubber slide. Wear 17, 301–312 (1971). https://doi.org/10.1016/0043-1648(71)90033-0

    Article  Google Scholar 

  38. Zhang, S.W.: Tribology of elastomers. Elsevier, Amsterdam (2004)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No.42072340) and the National Key R&D Program of China (2018YFC0603405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhang.

Ethics declarations

Ethical approval

I am sure the research that described in my article is quite related to Tribology Letters. I confirm that this article has not been published previously. And all authors have seen the manuscript and approved to submit to your journal only.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Li, S., Zhang, K. et al. Transitions of Wear Characteristics for Rubber/Steel Seal Pairs During the Abrasive Wear Process. Tribol Lett 69, 101 (2021). https://doi.org/10.1007/s11249-021-01480-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01480-4

Keywords

Navigation