Skip to main content
Log in

Correlating Molecular Structure to the Behavior of Linear Styrene–Butadiene Viscosity Modifiers

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The effect of linear styrene–butadiene polymer structure on the temperature–viscosity behavior of model polymer-base oil solutions is investigated using molecular dynamics simulations. Simulations of alternating, random, and block styrene–butadiene polymers in a dodecane solvent are used to calculate viscosity at 40 and 100 °C, reference temperatures for characterizing their function as viscosity modifiers. Mechanisms underlying this function are explored by quantifying the radius of gyration and intramolecular interactions of the polymers at the same reference temperatures. The block styrene–butadiene configuration exhibits the least change in viscosity with temperature, characteristic of a good viscosity modifier or viscosity index improver, and the behavior is correlated to the ability of this structure to form smaller coils with more intramolecular interactions at lower temperatures and then expand as temperature is increased. The results indicate that there is a correlation between styrene–butadiene polymer structure, additive function, and the mechanisms underlying that function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bair, S., Qureshi, F.: The high pressure rheology of polymer-oil solutions. Tribol. Int. 36(8), 637–645 (2003)

    Article  Google Scholar 

  2. Simmons, G., Glavatskih, S.: Synthetic lubricants in hydrodynamic journal bearings: experimental results. Tribol. Lett. 42(1), 109–115 (2011)

    Article  Google Scholar 

  3. Jukic, A., Vidovic, E., Janovic, Z.: Alkyl methacrylate and styrene terpolymers as lubricating oil viscosity index improvers. Chem. Tech. Fuels Oils 43(5), 386–394 (2007)

    Article  Google Scholar 

  4. Mohamad, S.A., Ahmed, N.S., Hassanein, S.M., Rashad, A.M.: Investigation of polyacrylates copolymers as lube oil viscosity index improvers. J. Petrol. Sci. Eng. 100, 173–177 (2012)

    Article  Google Scholar 

  5. Jerbić, I.Š., Vuković, J.P., Jukić, A.: Production and application properties of dispersive viscosity index improvers. Ind. Eng. Chem. Res. 51(37), 11914–11923 (2012)

    Article  Google Scholar 

  6. Stöhr, T., Eisenberg, B., Müller, M.: A new generation of high performance viscosity modifiers based on comb polymers. SAE Int. J. Fuels Lubr. 1(2008-01-2462), 1511–1516 (2008)

  7. Morgan, S., Ye, Z., Subramanian, R., Zhu, S.: Higher-molecular-weight hyperbranched polyethylenes containing crosslinking structures as lubricant viscosity-index improvers. Polym. Eng. Sci. 50(5), 911–918 (2010)

    Article  Google Scholar 

  8. Wang, J., Ye, Z., Zhu, S.: Topology-engineered hyperbranched high-molecular-weight polyethylenes as lubricant viscosity-index improvers of high shear stability. Ind. Eng. Chem. Res. 46(4), 1174–1178 (2007)

    Article  Google Scholar 

  9. Ghosh, P., Das, M.: Synthesis, characterization, and performance evaluation of some multifunctional lube oil additives. J. Chem. Eng. Data 58(3), 510–516 (2013)

    Article  Google Scholar 

  10. Fan, J., Müller, M., Stöhr, T., Spikes, H.A.: Reduction of friction by functionalised viscosity index improvers. Tribol. Lett. 28(3), 287–298 (2007)

    Article  Google Scholar 

  11. Spikes, H.: Friction modifier additives. Tribol. Lett. 60(5), 1–26 (2015)

    Google Scholar 

  12. Nunez, C.M., Chiou, B., Andrady, A.L., Khan, S.A.: Solution rheology of hyperbranched polyesters and their blends with linear polymers. Macromolecules 33(5), 1720–1726 (2000)

    Article  Google Scholar 

  13. Ishizu, K., Tsubaki, K., Mori, A., Uchida, S.: Architecture of nanostructured polymers. Prog. Polym. Sci. 28(1), 27–54 (2003)

    Article  Google Scholar 

  14. Knothe, G., Steidley, K.R.: Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84(9), 1059–1065 (2005)

    Article  Google Scholar 

  15. Gaciño, F.M., Regueira, T., Lugo, L., Comuñas, M.J.P., Fernández, J.: Influence of molecular structure on densities and viscosities of several ionic liquids. J. Chem. Eng. Data 56(12), 4984–4999 (2011)

    Article  Google Scholar 

  16. Kioupis, L.I., Maginn, E.J.: Molecular simulation of poly\(-\alpha -\)olefin synthetic lubricants: impact of molecular architecture on performance properties. J. Chem. Eng. Data 103(49), 10781–10790 (1999)

    Google Scholar 

  17. Bhattacharya, P., Ramasamy, U.S., Krueger, S., Robinson, J.W., Tarasevich, B.J., Martini, A., Cosimbescu, L.: Trends in thermoresponsive behavior of lipophilic polymers. Ind. Eng. Chem. Res. 55(51), 12983–12990 (2016)

    Article  Google Scholar 

  18. Khabaz, F., Khare, R.: Effect of chain architecture on the size, shape, and intrinsic viscosity of chains in polymer solutions: a molecular simulation study. J. Chem. Phys. 141(21), 214904 (2014)

    Article  Google Scholar 

  19. Covitch, M.J., Trickett, K.J.: How polymers behave as viscosity index improvers in lubricating oils. Adv. Chem. Eng. Sci. 5(02), 134–151 (2015)

    Article  Google Scholar 

  20. Selby, T.W.: The non-Newtonian characteristics of lubricating oils. ASLE Trans. 1(1), 68–81 (1958)

    Article  Google Scholar 

  21. Mary, C., Phillipon, D., Lafarge, L., Laurent, D., Rondelez, F., Bair, S., Vergne, P.: New insight into the relationship between molecular effects and the rheological behavior of polymer-thickened lubricants under high pressure. Tribol. Lett. 52(3), 357–369 (2013)

    Article  Google Scholar 

  22. Müller, H.G.: Mechanism of action of viscosity index improvers. Tribol. Int. 11(3), 189–192 (1978)

    Article  Google Scholar 

  23. LaRiviere, D., Asfour, A.F.A., Hage, A., Gao, J.Z.: Viscometric properties of viscosity index improvers in lubricant base oil over a wide temperature range. Part I: group II base oil. Lubr. Sci. 12(2), 133–143 (2000)

    Article  Google Scholar 

  24. Ramasamy, U.S., Lichter, S., Martini, A.: Effect of molecular-scale features on the polymer coil size of model viscosity index improvers. Tribol. Lett. 62(23), 1–7 (2016)

    Google Scholar 

  25. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117(1), 1–19 (1995)

    Article  Google Scholar 

  26. Jorgensen, W., Maxwell, D., Tirado-Rives, J.: Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)

    Article  Google Scholar 

  27. Nosé, S.: A unified formulation of the constant temperature molecular dynamics. J. Comp. Phys. 81(1), 511–519 (1984)

    Google Scholar 

  28. Nosé, S.: A molecular-dynamics method for simulations in the canonical ensemble. Mol. Phys. 52(2), 255–268 (1984)

    Article  Google Scholar 

  29. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695–1697 (1985)

    Article  Google Scholar 

  30. Ye, X., Cui, S., de Almeida, V.F., Khomami, B.: Effect of varying the 1–4 intramolecular scaling factor in atomistic simulations of long-chain n-alkanes with the opls-aa model. J. Mol. Model 19(3), 1251–1258 (2013)

    Article  Google Scholar 

  31. Müller-Plathe, F.: Reversing the perturbation in non-equilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids. Phys. Rev. E 59(5), 4894–4898 (1999)

    Article  Google Scholar 

  32. Kelkar, M.S., Rafferty, J.L., Maginn, E.J., Siepmann, J.I.: Prediction of viscosities and vapor-liquid equilibria for five polyhydric alcohols by molecular simulation. Fluid Phase Equilib. 260(2), 218–231 (2007)

    Article  Google Scholar 

  33. Tenney, C.M., Maginn, E.J.: Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics. J. Chem. Phys. 132(1), 014103 (2010)

    Article  Google Scholar 

  34. Jacobs, T.B.D., Martini, A.: Measuring and understanding contact area at the nanoscale: a review. Appl. Mech. Rev (2017)

  35. Lemmon, E.W., McLinden, M.O. , Friend, D.G.: Thermophysical properties of fluid systems. In: Linstrom, P.J., Mallard, W.G. (eds.). NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD (retrieved August 17, 2017)

  36. Zakarian, J.: The limitations of the viscosity index and proposals for other methods to rate viscosity-temperature behavior of lubricating oils. SAE Int. J. Fuels Lubr. 5(2012-01-1671), 1123–1131 (2012)

  37. Zempel, R.W.: Poly(Styrene-Butadiene). In: Tracton, A.A. (ed.) Coatings Technology Handbook, 3rd edn. CRC Press, Boca Raton (2005)

    Google Scholar 

Download references

Acknowledgements

We thank David Gray, Joan Souchik and Ewa Bardasz for useful discussion and feedback related to viscosity modifiers. We also acknowledge the Donors of the American Chemical Society Petroleum Research Fund (Grant #55026-ND6), National Science Foundation Engineering Research Center for Compact and Efficient Fluid Power EEC 05440834, and the National Fluid Power Association Education and Technology Foundations Pascal Society for support of this research. Some of the simulations reported in this work were run using the Extreme Science and Engineering Discovery Environment (XSEDE), which was supported by National Science Foundation Grant No. ACI-1053575.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashlie Martini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasamy, U.S., Len, M. & Martini, A. Correlating Molecular Structure to the Behavior of Linear Styrene–Butadiene Viscosity Modifiers. Tribol Lett 65, 147 (2017). https://doi.org/10.1007/s11249-017-0926-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0926-5

Keywords

Navigation