Skip to main content
Log in

Frictional Behavior of Wax–Oil Gels Against Steel

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Frictional behavior of wax–oil gels against steel has been investigated using a homemade tribometer to estimate the frictional resistant force produced by wax plugs in pipelines pigging. Experimental results show that there are several impact factors on frictional behavior of wax–oil gels against steel, including wax concentration, normal force and velocity. Coefficient of sliding friction increases with wax concentration. Normal load and velocity have opposite impacts on the coefficient of sliding friction. The outflow mineral oil has an important impact in the frictional process. A mechanism model of wax–oil gels against steel is built based on the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Moritis, G.: Flow assurance challenges production from deeper water. Oil Gas J. 99(1), 66–67 (2001)

    Google Scholar 

  2. Azevedo, L.F.A., Teixeira, A.M.: A critical review of the modeling of wax deposition mechanisms. Pet. Sci. Technol. 21(3–4), 393–408 (2003)

    Article  Google Scholar 

  3. Paso, K., Senra, M., Yi, Y., Sastry, A.M., Fogler, H.S.: Paraffin polydispersity facilitates mechanical gelation. Ind. Eng. Chem. Res. 44(18), 7242–7254 (2005)

    Article  Google Scholar 

  4. Aiyejina, A., Chakrabarti, D.P., Pilgrim, A., Sastry, M.K.S.: Wax formation in oil pipelines: a critical review. Int. J. Multiph. Flow 37(7), 671–694 (2011)

    Article  Google Scholar 

  5. Lu, Y., Huang, Z., Hoffmann, R., Amundsen, L., Fogler, H.S.: Counterintuitive effects of the oil flow rate on wax deposition. Energy Fuels 26(7), 4091–4097 (2012)

    Article  Google Scholar 

  6. Ribeiro, F.S., Mendes, P.R.S., Braga, S.L.: Obstruction of pipelines due to paraffin deposition during the flow of crude oils. Int. J. Heat Mass Transf. 40(18), 4319–4328 (1997)

    Article  Google Scholar 

  7. Bai, C., Zhang, J.: Thermal, macroscopic, and microscopic characteristics of wax deposits in field pipelines. Energy Fuels 27(2), 752–759 (2013)

    Article  Google Scholar 

  8. Kang, P.S., Lee, D.G., Lim, J.S.: Status of wax mitigation technologies in offshore oil production. In: The Twenty-fourth International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers (2004)

  9. Wang, Q., Sarica, C., Chen, T.X.: An experimental study on mechanics of wax removal in pipeline. J. Energy Res. Technol. 127(4), 302–309 (2005)

    Article  Google Scholar 

  10. Southgate, J.: Wax removal using pipeline pigs. Ph.D. Thesis, Durham University (2004)

  11. Hovden, L., Labes-Carrier, C., Rydahl, A., Ronningsen, H. P., Xu, Z.G.: Pipeline wax deposition models and model for removal of wax by pigging: comparison between model predictions and operational experience. In: Abstracts of Papers of the American Chemical Society, 1155 16th st, NW, Washington, DC 20036 USA: Amer Chemical Soc, 225, pp. U936–U936 (2003)

  12. Dirand, M., Chevallier, V., Provost, E., Bouroukba, M., Petitjean, D.: Multicomponent paraffin waxes and petroleum solid deposits: structural and thermodynamic state. Fuel 77(12), 1253–1260 (1998)

    Article  Google Scholar 

  13. Holder, G.A., Winkler, J.: Wax crystallization from distillate fuels. J. Inst. Pet. 51(499), 228–252 (1965)

    Google Scholar 

  14. Srivastava, S.P., Handoo, J., Agrawal, K.M., Joshi, G.C.: Phase-transition studies in n-alkanes and petroleum-related waxes—a review. J. Phys. Chem. Solids 54(6), 639–670 (1993)

    Article  Google Scholar 

  15. Singh, P., Venkatesan, R., Fogler, H.S., Nagarajan, N.: Formation and aging of incipient thin film wax-oil gels. AIChE J. 46(5), 1059–1074 (2000)

    Article  Google Scholar 

  16. Venkatesan, R., Nagarajan, N.R., Paso, K., Yi, Y.B., Sastry, A.M., Fogler, H.S.: The strength of paraffin gels formed under static and flow conditions. Chem. Eng. Sci. 60(13), 3587–3598 (2005)

    Article  Google Scholar 

  17. Lee, H.S.: Computational and rheological study of wax deposition and gelation in subsea pipelines. Ph.D. Thesis, The University of Michigan (2008)

  18. Wang, Q., Sarica, C., Volk, M.: An experimental study on wax removal in pipes with oil flow. J. Energy Res. Technol. 130(4), 043001 (2008)

    Article  Google Scholar 

  19. Barros Jr, J.M., Alves, D.P.P., Barroso, A.L., Souza, R.O., Azevedo, L.F.A.: Experimental validation of models for predicting wax removal forces in pigging operations. In: Proceedings of 18th International Congress of Mechanical Engineering, Ouro Preto, MG, Brazil, pp. 6–11 (2005)

  20. Wang, W., Huang, Q., Liu, Y., Sepehrnoori, K.: Experimental study on mechanisms of wax removal during pipeline pigging. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2015)

  21. Lan, Z., Liu, S., Xiao, H., Wang, D.: Frictional behavior of wax-oil gels. Tribol. Int. 96, 122–131 (2016)

    Article  Google Scholar 

  22. Lu, X., Khonsari, M.M., Gelinck, E.R.: The Stribeck curve: experimental results and theoretical prediction. J. Tribol. 128(4), 789–794 (2006)

    Article  Google Scholar 

  23. Bongaerts, J.H.H., Fourtouni, K., Stokes, J.R.: Soft-tribology: lubrication in a compliant PDMS–PDMS contact. Tribol. Int. 40(10), 1531–1542 (2007)

    Article  Google Scholar 

  24. Andablo-Reyes, E., de Vicente, J., Hidalgo-Álvarez, R., Myant, C., Reddyhoff, T., Spikes, H.A.: Soft elasto-hydrodynamic lubrication. Tribol. Lett. 39(1), 109–114 (2010)

    Article  Google Scholar 

  25. Bhushan, B.: Introduction to Tribology. Wiley, New York (2013)

    Book  Google Scholar 

  26. Dowson, D., Higginson, G.R.: Elasto-Hydrodynamic Lubrication: International Series on Materials Science and Technology. Elsevier, Amsterdam (2014)

    Google Scholar 

  27. Gong, J., Osada, Y.: Gel friction: a model based on surface repulsion and adsorption. J. Chem. Phys. 109(18), 8062–8068 (1998)

    Article  Google Scholar 

  28. Kurokawa, T., Tominaga, T., Katsuyama, Y., Kuwabara, R., Furukawa, H., Osada, Y., Gong, J.P.: Elastic—hydrodynamic transition of gel friction. Langmuir 21(19), 8643–8648 (2005)

    Article  Google Scholar 

  29. Venkatesan, R., Nagarajan, N.R., Paso, K., Yi, Y.B., Sastry, A.M., Fogler, H.S.: The strength of paraffin gels formed under static and flow conditions. Chem. Eng. Sci. 60(13), 3587–3598 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The work is financially supported by the National Natural Science Foundation of China (No. 51175514), the Program for New Century Excellent Talents University (NCET-13-1028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Z., Liu, S., Xiao, H. et al. Frictional Behavior of Wax–Oil Gels Against Steel. Tribol Lett 65, 88 (2017). https://doi.org/10.1007/s11249-017-0874-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0874-0

Keywords

Navigation