Skip to main content
Log in

Fluorinated Candle Soot as the Lubricant Additive of Perfluoropolyether

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In order to improve the tribological properties of perfluoropolyethers (PFPE), fluorinated candle soot is adopted as the lubricant additive because of their special onion-like structure. The candle soot particles (CSP) are modified by 1H,1H,2H,2H-perfluorooctanol (CSP-PFHE nanoparticles), and after the fluorination, they exhibit good dispersivity in PFPE. The mixtures composed of CSP-PFHE nanoparticles and PFPE possess better tribological performance than neat PFPE under different test conditions including variable temperature, the irradiation of atomic oxygen and extreme pressure. The reason can be attributed to that the graphene layers are exfoliated from the surfaces of nanoparticles and adhere onto the steel surfaces to form the tribofilm, which can protect the sliding pairs surfaces from friction and severe wear. Meanwhile, the redundant nanoparticles act as the rolling bearing between the sliding surfaces to decrease the wear and some are packed into the corrosion pits generated by PFPE to prevent further erosion in the process of friction. At the end, the lubricating mechanism of CSP-PFHE nanoparticles as additives of PFPE is proposed based on the test results of scanning electron microscope, contact electrical resistance and X-ray photoelectron spectroscopy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tao, Z., Bhushan, B.: Bonding, degradation, and environmental effects on novel perfluoropolyether lubricants. Wear 259, 1352–1361 (2005)

    Article  Google Scholar 

  2. Tyndall, G.W., Waltman, R.J., Pocker, D.J.: Concerning the interactions between Zdol perfluoropolyether lubricant and an amorphous-nitrogenated carbon surface. Langmuir 14, 7527–7536 (1998)

    Article  Google Scholar 

  3. Tonelli, C., Gavezotti, P., Strepparola, E.: Linear perfluoropolyether difunctional oligomers: chemistry, properties and applications. J. Fluor. Chem. 95, 51–70 (1999)

    Article  Google Scholar 

  4. Wang, X., Tan, A.Y.X., Cho, C.M., Ye, Q., He, C., Ji, R., Xie, H.Q., Tsai, J.W.H., Xu, J.: Highly thermally stable cyclotriphosphazene based perfluoropolyether lubricant oil. Tribol. Int. 90, 257–262 (2015)

    Article  Google Scholar 

  5. Nielsen, R.P., Valsecchi, R., Strandgaard, M., Maschietti, M.: Experimental study on fluid phase equilibria of hydroxyl-terminated perfluoropolyether oligomers and supercritical carbon dioxide. J. Supercrit. Fluids 101, 124–130 (2015)

    Article  Google Scholar 

  6. Kasai, P.H., Raman, V.: Z-dol versus Z-tetraol: bonding and durability in magnetic hard disk application. Tribol. Lett. 16, 29–36 (2004)

    Article  Google Scholar 

  7. Chung, P.S., Vemuri, S.H., Park, S., Jhon, M.S.: Molecular rheological analysis on binary blends of perfluoropolyether lubricants. J. Appl. Phys. (2014). doi:10.1063/1.4863265

    Google Scholar 

  8. Kozbial, A., Li, Z., Iasella, S., Taylor, A.T., Morganstein, B., Wang, Y., Sun, J., Zhou, B., Randall, N.X., Liu, H., Li, L.: Lubricating graphene with a nanometer-thick perfluoropolyether. Thin Solid Films 549, 299–305 (2013)

    Article  Google Scholar 

  9. Saperstein, D.D., Lin, L.J.: Improved surface adhesion and coverage of perfluoropolyether lubricants following Far-UV irradiation. Langmuir 6, 1522–1524 (1990)

    Article  Google Scholar 

  10. Huang, H.D., Tu, J.P., Gan, L.P., Li, C.Z.: An investigation on tribological properties of graphite nanosheets as oil additive. Wear 261, 140–144 (2006)

    Article  Google Scholar 

  11. Su, Y., Gong, L., Chen, D.: An investigation on tribological properties and lubrication mechanism of graphite nanoparticles as vegetable based oil additive. J. Nanomater. 2015, 1–7 (2015)

    Google Scholar 

  12. Liang, C., Liao, J., Li, A., Chen, C., Lin, H., Wang, X., Xu, Y.: Relationship between wettabilities and chemical compositions of candle soots. Fuel 128, 422–427 (2014)

    Article  Google Scholar 

  13. Lee, S., Wang, B.: Characteristics of emissions of air pollutants from mosquito coils and candles burning in a large environmental chamber. Atmos. Environ. 40, 2128–2138 (2006)

    Article  Google Scholar 

  14. Pagels, J., Wierzbicka, A., Nilsson, E., Isaxon, C., Dahl, A., Gudmundsson, A., Swietlicki, E., Bohgard, M.: Chemical composition and mass emission factors of candle smoke particles. J. Aerosol Sci. 40, 193–208 (2009)

    Article  Google Scholar 

  15. Petry, T., Cazelle, E., Lloyd, P., Mascarenhas, R., Stijntjes, G.: A standard method for measuring benzene and formaldehyde emissions from candles in emission test chambers for human health risk assessment purposes. Environ. Sci. Proc. Imp. 15, 1369–1382 (2013)

    Article  Google Scholar 

  16. Manoukian, A., Quivet, E., Temime-Roussel, B., Nicolas, M., Maupetit, F., Wortham, H.: Emission characteristics of air pollutants from incense and candle burning in indoor atmospheres. Environ. Sci. Pollut. Res. 20, 4659–4670 (2013)

    Article  Google Scholar 

  17. Menon, S., Hansen, J., Nazarenko, L., Luo, Y.: Climate effects of black carbon aerosols in China and India. Science 297, 2250–2253 (2002)

    Article  Google Scholar 

  18. Liu, H., Ye, T., Mao, C.: Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed. 46, 6473–6475 (2007)

    Article  Google Scholar 

  19. Boehm, H.P.: Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759–769 (1994)

    Article  Google Scholar 

  20. Khanam, A., Tripathi, S.K., Roy, D., Nasim, M.: A facile and novel synthetic method for the preparation of hydroxyl capped fluorescent carbon nanoparticles. Colloids Surf. B 102, 63–69 (2013)

    Article  Google Scholar 

  21. Sahoo, B.N., Kandasubramanian, B.: An experimental design for the investigation of water repellent property of candle soot particles. Mater. Chem. Phys. 148, 134–142 (2014)

    Article  Google Scholar 

  22. Deng, J., Cao, J., Li, J., Tan, H., Zhang, Q., Fu, Q.: Mechanical and surface properties of polyurethane/fluorinated multi-walled carbon nanotubes composites. J. Appl. Polym. Sci. 108, 2023–2028 (2008)

    Article  Google Scholar 

  23. Liu, L., Fang, Z., Gu, A., Guo, Z.: Lubrication effect of the paraffin oil filled with functionalized multiwalled carbon nanotubes for bismaleimide resin. Tribol. Lett. 42, 59–65 (2011)

    Article  Google Scholar 

  24. Kennedy, I.: Models of soot formation and oxidation. Prog. Energy Combust. 23, 95–132 (1997)

    Article  Google Scholar 

  25. Boehm, V.H.-P.: Zur Struktur der Rußteilchen. Z. Anorg. Allg. Chem. 297, 315–322 (1958)

    Article  Google Scholar 

  26. Su, Z., Zhou, W., Zhang, Y.: New insight into the soot nanoparticles in a candle flame. Chem. Commun. 47, 4700–4702 (2011)

    Article  Google Scholar 

  27. Joly-Pottuz, L., Vacher, B., Ohmae, N., Martin, J.M., Epicier, T.: Anti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additives. Tribol. Lett. 30, 69–80 (2008)

    Article  Google Scholar 

  28. Joly-Pottuz, L., Matsumoto, N., Kinoshita, H., Vacher, B., Belin, M., Montagnac, G., Martin, J.M., Ohmae, N.: Diamond-derived carbon onions as lubricant additives. Tribol. Int. 41, 69–78 (2008)

    Article  Google Scholar 

  29. Yu, Q., Huang, G., Cai, M., Zhou, F., Liu, W.: In situ zwitterionic supramolecular gel lubricants for significantly improved tribological properties. Tribol. Int. 95, 55–65 (2016)

    Article  Google Scholar 

  30. Song, Z., Yu, Q., Cai, M., Huang, G., Yao, M., Li, D., Liang, Y., Fan, M., Zhou, F.: Green ionic liquid lubricants prepared from anti-inflammatory drug. Tribol. Lett. (2015). doi:10.1007/s11249-015-0611-5

    Google Scholar 

  31. Daxi, W., Ying, F.: Action mechanism of antioxidation and anticorrosion and molecular design for perfluoropolyether fluid additives. Sci. China Ser. B 44, 428–435 (2001)

    Google Scholar 

  32. Yamaguchi, E.S., Ryason, P.R., Hansen, T.P.: Electrical contact resistance studies on zinc dithiophosphates. Tribol. Lett. 3, 27–33 (1997)

    Article  Google Scholar 

  33. Tsuchitani, S., Morishita, S., Kaneko, R., Hirono, S., Umemura, S.: Evaluation of a lightly scratched amorphous carbon surface by contact resistance of a conductive diamond tip and the carbon surface. Tribol. Lett. 15, 107–113 (2003)

    Article  Google Scholar 

  34. Walker, M.J., Berman, D., Nordquist, C., Krim, J.: Electrical contact resistance and device lifetime measurements of Au-RuO2-based RF MEMS exposed to hydrocarbons in vacuum and nitrogen environments. Tribol. Lett. 44, 305–314 (2011)

    Article  Google Scholar 

  35. Bhowmick, H., Majumdar, S.K., Biswas, S.K.: Influence of physical structure and chemistry of diesel soot suspended in hexadecane on lubrication of steel-on-steel contact. Wear 300, 180–188 (2013)

    Article  Google Scholar 

  36. Ferrari, A.C., Robertson, J.: Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B (2001). doi:10.1103/PhysRevB.64.075414

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51305428, 51675512 and 51227804), Natural Science Foundation of Gansu Province (Grant No. 1606RJZA051) and “973” program (2013CB632301).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meirong Cai or Weimin Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Yu, Q., Ma, Z. et al. Fluorinated Candle Soot as the Lubricant Additive of Perfluoropolyether. Tribol Lett 65, 28 (2017). https://doi.org/10.1007/s11249-017-0812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0812-1

Keywords

Navigation