Skip to main content
Log in

Friction-Induced Transformation from Graphite Dispersed in Esterified Bio-Oil to Graphene

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

An Erratum to this article was published on 28 July 2016

Abstract

Fabricating high-quality graphene with simple methods has aroused considerable interests in recent years. In this paper, graphite was dispersed in esterified bio-oil as a lubricant for steel/gray cast iron friction pairs, and the shear-induced transformation from graphite to graphene was observed. The tribological behavior during this process, including the influence of the normal load and sliding velocity, was investigated. The products formed after sliding were confirmed by Raman spectroscopy, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The results showed that friction induces exfoliation, accounting for the transformation from graphite into graphene, and the frictional conditions influence the products. It was also found that high loads and low sliding velocities facilitate the formation of high-quality single-layer graphene during sliding, and high loads and low sliding velocities also contributed to obtaining excellent tribological performance for friction pairs. Friction-induced transformation demonstrates a potentially new strategy for in situ graphene preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zhang, Y., Tan, Y.-W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)

    Article  Google Scholar 

  2. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  Google Scholar 

  3. Kostarelos, K., Novoselov, K.S.: Exploring the interface of graphene and biology. Science 344, 261–263 (2014)

    Article  Google Scholar 

  4. Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., Ruoff, R.S., Pellegrini, V.: Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015)

    Article  Google Scholar 

  5. Le, T.X.H., Bechelany, M., Lacour, S., Oturan, N., Oturan, M.A., Cretin, M.: High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode. Carbon 94, 1003–1011 (2015)

    Article  Google Scholar 

  6. Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S.A., Grigorieva, I., Firsov, A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  7. Raccichini, R., Varzi, A., Passerini, S., Scrosati, B.: The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015)

    Article  Google Scholar 

  8. Wu, K.-H., Cheng, H.-H., Mohammad, A.A., Blakey, I., Jack, K., Gentle, I.R., Wang, D.-W.: Electron-beam writing of deoxygenated micro-patterns on graphene oxide film. Carbon 95, 738–745 (2015)

    Article  Google Scholar 

  9. Yao, J., Shi, X., Zhai, W., Ibrahim, A.M.M., Xu, Z., Chen, L., Zhu, Q., Xiao, Y., Zhang, Q., Wang, Z.: The enhanced tribological properties of NiAl intermetallics: combined lubrication of multilayer graphene and WS2. Tribol. Lett. 56, 573–582 (2014)

    Article  Google Scholar 

  10. Kay, L., Porter, A.L., Youtie, J., Rafols, I., Newman, N.: Mapping graphene science and development: focused research with multiple application areas. J. Am. Soc. Inf. Sci. Tech. 41, 22–25 (2015)

    Google Scholar 

  11. Yi, M., Shen, Z.: A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3, 11700–11715 (2015)

    Article  Google Scholar 

  12. Tetlow, H., De Boer, J.P., Ford, I., Vvedensky, D., Coraux, J., Kantorovich, L.: Growth of epitaxial graphene: theory and experiment. Phys. Rep. 542, 195–295 (2014)

    Article  Google Scholar 

  13. Strudwick, A.J., Weber, N.E., Schwab, M.G., Kettner, M., Weitz, R.T., Wünsch, J.R., Müllen, K., Sachdev, H.: Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres. ACS Nano 9, 31–42 (2014)

    Article  Google Scholar 

  14. Chua, C.K., Pumera, M.: Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291–312 (2014)

    Article  Google Scholar 

  15. Novoselov, K.S., Fal, V., Colombo, L., Gellert, P., Schwab, M., Kim, K.: A roadmap for graphene. Nature 490, 192–200 (2012)

    Article  Google Scholar 

  16. Kuila, T., Bose, S., Hong, C.E., Uddin, M.E., Khanra, P., Kim, N.H., Lee, J.H.: Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon 49, 1033–1037 (2011)

    Article  Google Scholar 

  17. Barham, G.: Good and bad lubricants. J. Am. Soc. Nav. Eng. 27, 694–697 (1915)

    Google Scholar 

  18. Gillett, H.W.: Analyses and friction tests of lubricating greases. Ind. Eng. Chem. 1, 351–360 (1909)

    Article  Google Scholar 

  19. Mabery, C.F.: Lubrication with oils, and with colloidal graphite. Ind. Eng. Chem. 5, 717–723 (1913)

    Article  Google Scholar 

  20. Shaji, S., Radhakrishnan, V.: Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method. J. Mater. Process. Technol. 141, 51–59 (2003)

    Article  Google Scholar 

  21. Alberts, M., Kalaitzidou, K., Melkote, S.: An investigation of graphite nanoplatelets as lubricant in grinding. Int. J. Mach. Tool Manuf. 49, 966–970 (2009)

    Article  Google Scholar 

  22. Suresh Kumar Reddy, N., Venkateswara Rao, P.: Performance improvement of end milling using graphite as a solid lubricant. Mater. Manuf. Process. 20, 673–686 (2005)

    Article  Google Scholar 

  23. Kumar, N., Dash, S., Tyagi, A.K., Raj, B.: Super low to high friction of turbostratic graphite under various atmospheric test conditions. Tribol. Int. 44, 1969–1978 (2011)

    Article  Google Scholar 

  24. Mungse, H.P., Kumar, N., Khatri, O.P.: Synthesis, dispersion and lubrication potential of basal plane functionalized alkylated graphene nanosheets. RSC Adv. 5, 25565–25571 (2015)

    Article  Google Scholar 

  25. Toyoda, M., Inagaki, M.: Heavy oil sorption using exfoliated graphite: new application of exfoliated graphite to protect heavy oil pollution. Carbon 38, 199–210 (2000)

    Article  Google Scholar 

  26. Marks, N.: Generalizing the environment-dependent interaction potential for carbon. Phys. Rev. B 63, 035401 (2000)

    Article  Google Scholar 

  27. León, V., Rodriguez, A.M., Prieto, P., Prato, M., Vázquez, E.: Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions. ACS Nano 8, 563–571 (2014)

    Article  Google Scholar 

  28. Xu, Y., Zheng, X., Hu, X., Dearn, K.D., Xu, H.: Effect of catalytic esterification on the friction and wear performance of bio-oil. Wear 311, 93–100 (2014)

    Article  Google Scholar 

  29. Xu, Y., Hu, X., Yuan, K., Zhu, G., Wang, W.: Friction and wear behaviors of catalytic methylesterified bio-oil. Tribol. Int. 71, 168–174 (2014)

    Article  Google Scholar 

  30. Xu, Y., Peng, Y., Dearn, K.D., Zheng, X., Yao, L., Hu, X.: Synergistic lubricating behaviors of graphene and MoS2 dispersed in esterified bio-oil for steel/steel contact. Wear 342, 297–309 (2015)

    Article  Google Scholar 

  31. Wang, G., Shen, X., Wang, B., Yao, J., Park, J.: Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47, 1359–1364 (2009)

    Article  Google Scholar 

  32. Li, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)

    Article  Google Scholar 

  33. Liang, S., Shen, Z., Yi, M., Liu, L., Zhang, X., Ma, S.: In-situ exfoliated graphene for high-performance water-based lubricants. Carbon 96, 1181–1190 (2016)

    Article  Google Scholar 

  34. Han, H., Gao, Y., Zhang, Y., Du, S., Liu, H.: Effect of magnetic field distribution of friction surface on friction and wear properties of 45 steel in DC magnetic field. Wear 328, 422–435 (2015)

    Article  Google Scholar 

  35. Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  Google Scholar 

  36. Schmucker, S.W., Cress, C.D., Culbertson, J.C., Beeman, J.W., Dubon, O.D., Robinson, J.T.: Raman signature of defected twisted bilayer graphene. Carbon 93, 250–257 (2015)

    Article  Google Scholar 

  37. Umair, A., Raza, H.: Controlled synthesis of bilayer graphene on nickel. Nanoscale Res. Lett. 7, 1–5 (2012)

    Article  Google Scholar 

  38. Gupta, B., Panda, K., Kumar, N., Melvin, A.A., Dash, S., Tyagi, A.K.: Chemically grafted graphite nanosheets dispersed in poly (ethylene-glycol) by γ-radiolysis for enhanced lubrication. RSC Adv. 5, 53766–53775 (2015)

    Article  Google Scholar 

  39. Ferrari, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    Article  Google Scholar 

  40. Lin, J., Wang, L., Chen, G.: Modification of graphene platelets and their tribological properties as a lubricant additive. Tribol. Lett. 41, 209–215 (2011)

    Article  Google Scholar 

  41. Chen, B., Bi, Q., Yang, J., Xia, Y., Hao, J.: Tribological properties of solid lubricants (graphite, h-BN) for Cu-based P/M friction composites. Tribol. Int. 41, 1145–1152 (2008)

    Article  Google Scholar 

  42. Xu, Y.F., Zheng, X.J., Yin, Y.G., Huang, J., Hu, X.G.: Comparison and analysis of the influence of test conditions on the tribological properties of emulsified bio-oil. Tribol. Lett. 55, 543–552 (2014)

    Article  Google Scholar 

  43. Gong, T., Yao, P., Xiao, Y., Fan, K., Tan, H., Zhang, Z., Zhao, L., Zhou, H., Deng, M.: Wear map for a copper-based friction clutch material under oil lubrication. Wear 328, 270–276 (2015)

    Article  Google Scholar 

  44. Muthuraja, A., Senthilvelan, S.: Adhesive wear performance of tungsten carbide based solid lubricant material. Int. J. Refract. Hard Met. 52, 235–244 (2015)

    Article  Google Scholar 

  45. Major, L., Janusz, M., Kot, M., Lackner, J., Major, B.: Development and complex characterization of bio-tribological Cr/CrN+ aC: H (doped Cr) nano-multilayer protective coatings for carbon-fiber-composite materials. RSC Adv. 5, 9405–9415 (2015)

    Article  Google Scholar 

  46. Li, X., Zhou, Y., Ji, X., Li, Y., Wang, S.: Effects of sliding velocity on tribo-oxides and wear behavior of Ti–6Al–4 V alloy. Tribol. Int. 91, 228–234 (2015)

    Article  Google Scholar 

  47. Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2009)

    Article  Google Scholar 

  48. Wang, L., Zhang, Q., Li, X., Cui, X., Wang, S.: Severe-to-mild wear transition of titanium alloys as a function of temperature. Tribol. Lett. 53, 511–520 (2014)

    Article  Google Scholar 

  49. Karlsson, P., Gåård, A., Krakhmalev, P.: Influence of tool steel microstructure on friction and initial material transfer. Wear 319, 12–18 (2014)

    Article  Google Scholar 

  50. Berman, D., Erdemir, A., Sumant, A.V.: Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon 54, 454–459 (2013)

    Article  Google Scholar 

  51. Kim, K.-S., Lee, H.-J., Lee, C., Lee, S.-K., Jang, H., Ahn, J.-H., Kim, J.-H., Lee, H.-J.: Chemical vapor deposition-grown graphene: the thinnest solid lubricant. ACS Nano 5, 5107–5114 (2011)

    Article  Google Scholar 

  52. Sarno, M., Senatore, A., Cirillo, C., Petrone, V., Ciambelli, P.: Oil lubricant tribological behaviour improvement through dispersion of few layer graphene oxide. J. Nanosci. Nanotechnol. 14, 4960–4968 (2014)

    Article  Google Scholar 

  53. Berman, D., Erdemir, A., Sumant, A.V.: Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon 59, 167–175 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely appreciate Prof. Wilfred T. Tysoe of University of Wisconsin–Milwaukee for giving helpful revisions and constructive suggestions. This work was supported by the National Natural Science Foundation of China (Grant No. 51405124), the China Postdoctoral Science Foundation (Grant No. 2015T80648 & 2014M560505), the Anhui Provincial Natural Science Foundation (Grant No. 1408085ME82) and the Tribology Science Fund of State Key Laboratory of Tribology (Grant No. STKLKF15A05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufu Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Geng, J., Zheng, X. et al. Friction-Induced Transformation from Graphite Dispersed in Esterified Bio-Oil to Graphene. Tribol Lett 63, 18 (2016). https://doi.org/10.1007/s11249-016-0708-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0708-5

Keywords

Navigation