Skip to main content

Advertisement

Log in

Direct Exfoliation of Graphite into Graphene by Pyrene-Based Molecules as Molecular-Level Wedges: A Tribological View

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The van der Waals corrected first-principles approach within density functional theory is performed to investigate the mechanism of direct exfoliation of graphite into graphene by pyrene-based molecules. Our results show that the interaction energies between pyrene-based molecules and graphene are larger than the interlayer inaction energy of bilayer graphene. However, the frictions of pyrene-based molecules on graphene are lower than the interlayer friction of bilayer graphene. The comparisons of adsorption energies and frictions for different molecules on graphene indicate that the size of friction can be affected by the length and type of the additional chain of pyrene-based molecule. These studies illustrate that the PCA can bond to graphene from adsorption energy view, and can slide on the graphene easily, which explains the experiment very well and provides a few of alternative molecules to produce the aqueous dispersions of graphene flakes according to different demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Geim, A., Novoselov, K.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  2. Park, S., Ruoff, R.: Chemical methods for the production of graphenes. Nat. Nanotech. 4, 217–224 (2009)

    Article  Google Scholar 

  3. An, X., Simmons, T., Shah, R., Wolfe, C., Lewis, K., Washington, M., Nayak, S., Talapatra, S., Kar, S.: Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett. 10, 4295–4301 (2010)

    Article  Google Scholar 

  4. Simmons, T., Bult, J., Hashim, D., Linhardt, R., Ajayan, P.: Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites. ACS Nano 3, 865–870 (2009)

    Article  Google Scholar 

  5. Li, L., Zheng, X., Wang, J., Sun, Q., Xu, Q.: Solvent-exfoliated and functionalized graphene with assistance of supercritical carbon dioxide. ACS Sustain. Chem. Eng. 1, 144–151 (2013)

    Google Scholar 

  6. Leenaerts, O., Partoens, B., Peeters, F.: Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys. Rev. B 77, 125416 (2008)

    Article  Google Scholar 

  7. Umadevi, D., Sastry, G.: Molecular and ionic interaction with graphene nanoflakes: a computational investigation of CO2, H2O, Li, Mg, Li+, and Mg2+ interaction with polycyclic aromatic hydrocarbons. J. Phys. Chem. C 115, 9656–9667 (2011)

    Article  Google Scholar 

  8. Chan, K., Neaton, J., Cohen, M.: First-principles study of metal adatom adsorption on graphene. Phys. Rev. B 77, 235430 (2008)

    Article  Google Scholar 

  9. Wehling, T., Lichtenstein, A., Katsnelson, M.: Transition-metal adatoms on graphene: influence of local Coulomb interactions on chemical bonding and magnetic moments. Phys. Rev. B 84, 235110 (2011)

    Article  Google Scholar 

  10. Chankarova-Käck, S., Vojvodic, A., Kleis, J., Hyldgaard, P., Schröder, E.: Binding of polycyclic aromatic hydrocarbons and graphene dimers in density functional theory. New J. Phys. 12, 013017 (2010)

    Article  Google Scholar 

  11. Chen, D.-M., Shenai, P., Zhao, Y.: Tight binding description on the band gap opening of pyrene-dispersed graphene. Phys. Chem. Chem. Phys. 13, 1515–1520 (2011)

    Article  Google Scholar 

  12. Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

    Article  Google Scholar 

  13. Kress, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14271 (1994)

    Article  Google Scholar 

  14. Kress, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  Google Scholar 

  15. Blöchl, P.: Projector augmented-wave method. Phys. Rev. B 50, 17956–17979 (1994)

    Article  Google Scholar 

  16. Kress, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  Google Scholar 

  17. Perdew, J., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  18. Monkhorst, H., Park, J.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  Google Scholar 

  19. Ooi, N., Rairkar, A., Adams, J.: Density functional study of graphite bulk and surface properties. Carbon 44, 231–242 (2006)

    Article  Google Scholar 

  20. McKie, D., McKie, C.: Essentials of Crystallography, pp. 6–8. Oxford Press, Oxford (1986)

    Google Scholar 

  21. Zacharia, R., Ulbricht, H., Hertel, T.: Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 69, 155406 (2004)

    Article  Google Scholar 

  22. Zhong, W., Tománek, D.: First-principles theory of atomic-scale friction. Phys. Rev. Lett. 64, 3054–3057 (1990)

    Article  Google Scholar 

  23. Wang, J., Li, J., Fang, L., Sun, Q., Jia, Y.: Charge Distribution view: large difference in friction performance between graphene and hydrogenated Graphene systems. Tribol. Lett. 55, 405–412 (2014)

    Article  Google Scholar 

  24. Wang, C., Chen, W., Zhang, Y., Sun, Q., Jia, Y.: Effects of vdW interaction and electric field on friction in MoS2. Tribol. Lett. 59, 1–8 (2015)

    Article  Google Scholar 

  25. Wang, J., Li, M., Zhang, X., Cai, X., Yang, L., Li, J., Jia, Y.: An atomic scale study of ultralow friction between phosphorus-doped nanocrystalline diamond film. Tribol. Int. 86, 85–90 (2015)

    Article  Google Scholar 

  26. Cai, X., Wang, J., Li, J., Sun, Q., Jia, Y.: Spin friction between Co monolayer and Mn/W(110) surface: Ab initio investigations. Tribol. Int. 95, 419–425 (2016)

    Article  Google Scholar 

  27. Wang, J., Li, J., Li, C., Cai, X., Zhu, W., Jia, Y.: Tuning the nanofriction between two graphene layers by external electric fields: a density functional theory study. Tribol. Lett. 61, 4 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Basic Research Program of China (Grant No. 2012CB921300), the National Natural Science Foundation of China (Grant Nos. 11274280, 11447155), and Natural Science Foundation of Henan Province (Grant No. 142300410250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Wang, J., Chi, R. et al. Direct Exfoliation of Graphite into Graphene by Pyrene-Based Molecules as Molecular-Level Wedges: A Tribological View. Tribol Lett 62, 27 (2016). https://doi.org/10.1007/s11249-016-0678-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0678-7

Keywords

Navigation