Skip to main content
Log in

Characterization of Surface Topography from Small Images

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Detailed characterization of 3D engineering surface topographies is still an unresolved problem. The reasons are that the majority of the real surfaces are anisotropic and multi-scale, i.e. their directionality and roughness change with the measurement scales. To solve this problem, a variance orientation transform (VOT) method was developed. It calculates fractal dimensions at individual scales, i.e. it calculates the fractal signature (FS) in all possible directions, addressing, in this way, the problems of surfaces’ multi-scale and anisotropic nature. However, the VOT method is not suited for the analysis of image sizes that are smaller than 48 × 48 pixels (e.g. images of wear particles surfaces, small surface defects, etc.). To redress this problem the VOT method was augmented so that it can calculate FSs for all images including those with small sizes. Previous study showed that the augmented VOT (AVOT) method is accurate in the analysis of hand x-ray images where the bone texture images are small (20 × 20 pixels). However, its usefulness in analysing small images of engineering surfaces has not yet been investigated. In the current study, we use range-images of different sizes (20 × 20 and 30 × 30 pixels) of polished (isotropic) and ground (anisotropic) steel plates. When applied to images of steel surfaces of different topography, the AVOT method has detected minute changes at different scales, undetectable by other commonly used surface characterization methods, between the surfaces. The results show that the method can be a valuable tool in characterization of small images of 3D engineering surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

FD:

Fractal dimension

FS:

Fractal signature

VOT:

Variance orientation transform

AVOT:

Augmented VOT

ROI:

Region of interest

RMPS:

Recursive multi-directional pixel selection

a, b :

Major and minor axes of an ellipse

CI :

Confidence interval

d :

Distance

H :

Hurst coefficient

I w, I h (pixel):

Image width and height

P :

Statistical significance

r 1, r 2 (pixel):

Inner and outer radii

Ra (μm):

Roughness average

Sa (μm):

Arithmetical mean height

S ta :

Texture minor axis

S tr :

Texture aspect ratio

Str:

Non-fractal texture aspect ratio

S td (°):

Fractal texture direction

Std (°):

Non-fractal texture direction

SD:

Standard deviation

FSSta :

Fractal signature S ta

StrS:

Texture aspect ratio signature

StdS (°):

Texture direction signature

α (°):

Direction

θ r (°):

Reference direction

References

  1. ASME B46.1 Surface Texture, Surface Roughness, Waviness and Lay. American Society of Mechanical Engineers, New York (2002)

  2. ISO 25178-2 Geometrical Product Specifications (GPS) Surface Texture: Areal Part 2: Terms, Definitions and Surface Texture Parameters. International Organization for Standardization, Geneva (2012)

  3. Wolski, M., Podsiadlo, P., Stachowiak, G.W.: Directional fractal signature analysis of trabecular bone: evaluation of different methods to detect early osteoarthritis in knee radiographs. Proc. Inst. Mech. Eng. H 223, 211–236 (2009)

    Article  Google Scholar 

  4. Wolski, M., Podsiadlo, P., Stachowiak, G.W.: Applications of the variance orientation transform method to the multiscale characterization of surface roughness and anisotropy. Tribol. Int. 43, 2203–2215 (2010)

    Article  Google Scholar 

  5. Wolski, M., Stachowiak, G.W., Dempsey, A.R., Mills, P.M., Cicuttini, F.M., Wang, Y., Stoffel, K.K., Lloyd, D.G., Podsiadlo, P.: Trabecular bone texture detected by plain radiography and variance orientation transform method is different between knees with and without cartilage defects. J. Orthop. Res. 29, 1161–1167 (2011)

    Article  Google Scholar 

  6. Holmberg, K., Laukkanen, A., Ronkainen, H., Waudby, R., Stachowiak, G., Wolski, M., Podsiadlo, P., Gee, M., Nunn, J., Gachot, C.: Topographical orientation effects on friction and wear in sliding DLC and steel contacts, part 1: experimental. Wear 330, 3–22 (2015)

    Article  Google Scholar 

  7. Podsiadlo, P., Cicuttini, F.M., Wolski, M., Stachowiak, G.W., Wluka, A.E.: Trabecular bone texture detected by plain radiography is associated with an increased risk of knee replacement in patients with osteoarthritis: a 6 year prospective follow up study. Osteoarthr. Cartil. 22, 71–75 (2014)

    Article  Google Scholar 

  8. Wolski, M., Podsiadlo, P., Stachowiak, G.W.: Directional fractal signature methods for trabecular bone texture in hand radiographs: data from the Osteoarthritis Initiative. Med. Phys. 41, 400–416 (2014)

    Article  Google Scholar 

  9. Wang, J., Wang, X.: A wear particle identification method by combining principal component analysis and grey relational analysis. Wear 304, 96–102 (2013)

    Article  Google Scholar 

  10. Wang, J.Q., Zhang, L., Lu, F.X., Wang, X.L.: The segmentation of wear particles in ferrograph images based on an improved ant colony algorithm. Wear 311, 123–129 (2014)

    Article  Google Scholar 

  11. Scholz-Reiter, B., Weimer, D., Thamer, H.: Automated surface inspection of cold-formed micro-parts. Cirp. Ann.-Manuf. Technol. 61, 531–534 (2012)

    Article  Google Scholar 

  12. Weimer, D., Thamer, H., Scholz-Reiter, B.: Learning defect classifiers for textured surfaces using neural networks and statistical feature representations. In: Procedia CIRP 2013, pp. 347–352 (2013)

  13. Ergin, S., Kilinc, O.: A new feature extraction framework based on wavelets for breast cancer diagnosis. Comput. Biol. Med. 51, 171–182 (2014)

    Article  Google Scholar 

  14. Wang, Q.J., Zhu, D., Zhou, R.S., Hashimoto, F.: Investigating the effect of surface finish on mixed EHL in rolling and rolling-sliding contacts. Tribol. Trans. 51, 748–761 (2008)

    Article  Google Scholar 

  15. Baptista, D., Muszynski, L., Gardner, D.J., Atzema, E.: An Experimental method for three-dimensional dynamic contact angle analysis. J. Adhes. Sci. Technol. 26, 2199–2215 (2012)

    Google Scholar 

  16. Menezes, P.L., Kishore, Kailas, S.V.: Effect of surface roughness parameters and surface texture on friction and transfer layer formation in tin-steel tribo-system. J. Mater. Process. Technol. 208(1), 372–382 (2008)

    Article  Google Scholar 

  17. Scaraggi, M.: Optimal textures for increasing the load support in a thrust bearing pad geometry. Tribol. Lett. 53, 127–143 (2014)

    Article  Google Scholar 

  18. Ren, N., Nanbu, T., Yasuda, Y., Zhu, D., Wang, Q.: Micro textures in concentrated-conformal-contact lubrication: effect of distribution patterns. Tribol. Lett. 28, 275–285 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Curtin University, Department of Mechanical Engineering and the School of Civil and Mechanical Engineering for their support during preparation of the manuscript. The study was conducted as part of the Implementing Agreement on Advanced Material for Transportation Applications, Annex IV Integrated Engineered Surface Technology. The Implementing agreement functions within a framework created by the International Energy Agency (IEA). The views, findings, and publications of the AMT IA do not necessarily represent the views or policies of the IEA or of all of its individual member countries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Wolski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolski, M., Podsiadlo, P. & Stachowiak, G.W. Characterization of Surface Topography from Small Images. Tribol Lett 61, 2 (2016). https://doi.org/10.1007/s11249-015-0627-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0627-x

Keywords

Navigation