Skip to main content
Log in

Nanoscale Abrasive Wear of CoCrMo in In Situ TEM Sliding

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The mechanical behaviour of materials at nanometre dimensions has been a major recent topic of research. In this study, the wear properties of a ~60-nm thin foil made of the ductile fcc phase of a CoCrMo alloy were examined using in situ sliding test in a transmission electron microscope by sliding a silicon AFM tip on the fcc matrix under an applied normal load of 416–1,279 nN. The material near the surface was deformed plastically, forming dislocations and dislocation cells at the surface. The wear process was found to be strongly dependent on extrinsic factors, namely the attack angle between the tip and the CoCrMo surface. At an attack angle of 64°, the surface was removed by continuous fractures 40–73 nm below the surface. At a lower attack angle of 24°, the abrasive wear switched to ploughing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dowson, D.: History of tribology. Professional Engineering Publishers, London (1998)

    Google Scholar 

  2. Johnson, K.L.: Contact mechanics. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  3. Hutchings, I.M.: Tribology: friction and wear of engineering materials. Edward Arnold, London (1992)

    Google Scholar 

  4. Williams, J.A.: Engineering tribology. Oxford University Press, Oxford (1994)

    Google Scholar 

  5. Bowden, F.P., Tabor, D., Gane, N., Willis, R.F.: Solid surfaces under static and sliding contact-some recent work on microdeformation and chemical reactivity. Z. Phys. Chem-Leipzig 244, 129 (1970)

    Google Scholar 

  6. Gane, N., Bowden, F.P.: Microdeformation of solids. J. Appl. Phys. 39, 1432 (1968)

    Article  Google Scholar 

  7. Bowden, F.P., Tabor, D.: The friction and lubrication of solids. Clarendon Press, Oxford (1950)

    Google Scholar 

  8. Bowden, F.P., Moore, A.J.W., Tabor, D.: The ploughing and adhesion of sliding metals. J. Appl. Phys. 80, 80–91 (1942)

    Google Scholar 

  9. Bhushan, B.: Contact mechanics of rough surfaces in tribology: multiple asperity contact. Tribol. Lett. 4, 1–35 (1998). doi:10.1023/A:1019186601445

    Article  Google Scholar 

  10. Bhushan, B.: Handbook of micro/nanotribology. CRC Press, Boca Raton (1995)

    Google Scholar 

  11. Bhushan, B., Majumdar, A.: Fractal theory of the interfacial temperature distribution in the slow sliding regime. 1. Elastic contact and heat-transfer analysis—discussion. J. Tribol. T. ASME 116, 822 (1994). doi:10.1115/1.2927339

    Article  Google Scholar 

  12. Rigney, D.A.: Comments on the sliding of wear of metals. Tribol. Int. 30, 361–367 (1997)

    Article  Google Scholar 

  13. Marks, L.D., Warren, O.L., Minor, A.M., Merkle, A.P.: Tribology in full view. MRS Bull. 33, 1168–1173 (2008)

    Article  Google Scholar 

  14. Gotsmann, B., Lantz, M. A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101, 125501 (2008)

  15. Bhaskaran, H., et al.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5, 181–185 (2010)

    Article  Google Scholar 

  16. Jacobs, T.D.B., Carpick, R.W.: Nanoscale wear as a stress-assisted chemical reaction. Nat. Nanotechnol. 8, 108–112 (2013)

    Article  Google Scholar 

  17. Gnecco, E., Bennewitz, R., Meyer, E.: Abrasive wear on the atomic scale. Phys. Rev. Lett. 88, 215501 (2002)

  18. Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D Appl. Phys. 41, 123001–123039 (2008)

    Article  Google Scholar 

  19. Bates, T.R., Ludema, K.C., Brainard, W.A.: Rheological mechanism of penetrative wear. Wear 30, 365–375 (1974). doi:10.1016/0043-1648(74)90150-1

    Article  Google Scholar 

  20. Kato, K.: Micromechanisms of wear—wear modes. Wear 153, 277–295 (1992). doi:10.1016/0043-1648(92)90274-C

    Article  Google Scholar 

  21. Hokkirigawa, K., Kato, K.: An experimental and theoretical investigation of plowing, cutting and wedge formation during abrasive wear. Tribol. Int. 21, 51–57 (1988). doi:10.1016/0301-679x(88)90128-4

    Article  Google Scholar 

  22. Kato, K., Kayaba, T., Endo, Y., Hokkirigawa, K.: Three dimensional shape effect on abrasive wear. J. Tribol. 108, 346–349 (1986)

    Article  Google Scholar 

  23. Liao, Y., EswaraMoorthy, S.K., Marks, L.D.: Direct observation of tribological recrystallization. Phil. Mag. Lett. 90, 219–223 (2010). doi:10.1080/09500830903571384

    Article  Google Scholar 

  24. Merkle, A.P., Marks, L.D.: Liquid-like tribology of gold studied by in situ TEM. Wear 265, 1864–1869 (2008). doi:10.1016/j.wear.2008.04.032

    Article  Google Scholar 

  25. Luan, B.Q., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005). doi:10.1038/Nature03700

    Article  Google Scholar 

  26. Jacobs, J.J., et al.: Metal-on-metal bearing surfaces. J. Am. Acad. Orthop. Sur. 17, 69–76 (2009)

    Google Scholar 

  27. Liao, Y., et al.: New insights into hard phases of CoCrMo metal-on-metal hip replacements. J. Mech. Behav. Biomed. 12, 39–49 (2012)

    Article  Google Scholar 

  28. Stemmer, P. et al.: Microstructure of retrievals made from standard cast HC-CoCrMo alloys. ASTM-STP, (2012, in print)

  29. Pourzal, R., et al.: Subsurface changes of a MoM hip implant below different contact zones. J. Mech. Behav. Biomed. 2, 186–191 (2009). doi:10.1016/j.jmbbm.2008.08.002

    Article  Google Scholar 

  30. Clemow, A.J.T., Daniell, B.L.: Solution treatment behavior of Co-Cr-Mo alloy. J. Biomed. Mater. Res. 13, 265–279 (1979)

    Article  Google Scholar 

  31. Liao, Y., Marks, L. D.: Direct observation of layer-by-layer wear. (2014, submitted)

  32. Dillamor, I.L.: The stacking fault energy dependence of the mechanisms of deformation in fcc metals. Metall. Trans. 1, 2463–2470 (1970)

    Google Scholar 

  33. Rajan, K., Vandersande, J.B.: Room-temperature strengthening mechanisms in a Co-Cr-Mo-C alloy. J. Mater. Sci. 17, 769–778 (1982). doi:10.1007/Bf00540374

    Article  Google Scholar 

  34. Uchic, M.D., Dimiduk, D.M., Florando, J.N., Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004)

    Article  Google Scholar 

  35. Chisholm, C., et al.: Dislocation starvation and exhaustion hardening in Mo alloy nanofibers. Acta Mater. 60, 2258–2264 (2012). doi:10.1016/j.actamat.2011.12.027

    Article  Google Scholar 

  36. Shan, Z.W., Mishra, R.K., Asif, S.A.S., Warren, O.L., Minor, A.M.: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115–119 (2007)

    Article  Google Scholar 

  37. Minor, A.M., et al.: A new view of the onset of plasticity during the nanoindentation of aluminium. Nat. Mater. 5, 697–702 (2006). doi:10.1038/Nmat1714

    Article  Google Scholar 

  38. Buscher, R., et al.: Subsurface microstructure of metal-on-metal hip joints and its relationship to wear particle generation. J. Biomed. Mater. Res. B 72B, 206–214 (2005). doi:10.1002/Jbm.B.30132

    Article  Google Scholar 

  39. Buscher, R., Fischer, A.: The pathways of dynamic recrystallization in all-metal hip joints. Wear 259, 887–897 (2005). doi:10.1016/j.wear.2005.02.036

    Article  Google Scholar 

  40. Bryant, M., et al.: Characterisation of the surface topography, tomography and chemistry of fretting corrosion product found on retrieved polished femoral stems. J. Mech. Behav. Biomed. 32, 321–334 (2014)

    Article  Google Scholar 

  41. Zhao, X.Z., Bhushan, B.: Material removal mechanisms of single-crystal silicon on nanoscale and at ultralow loads. Wear 223, 66–78 (1998). doi:10.1016/S0043-1648(98)00302-0

    Article  Google Scholar 

  42. Mishra, M., Szlufarska, I.: Dislocation controlled wear in single crystal silicon carbide. J. Mater. Sci. 48, 1593–1603 (2013). doi:10.1007/s10853-012-6916-y

    Article  Google Scholar 

  43. Challen, J.M., Oxley, P.L.B.: Explanation of the different regimes of friction and wear using asperity deformation models. Wear 53, 229–243 (1979). doi:10.1016/0043-1648(79)90080-2

    Article  Google Scholar 

  44. Hearle, A.D., Johnson, K.L.: Mode-II stress intensity factors for a crack parallel to the surface of an elastic half-space subjected to a moving point load. J. Mech. Phys. Solids 33, 61 (1985). doi:10.1016/0022-5096(85)90022-5

    Article  Google Scholar 

  45. Lawn, B.R., Swain, M.V.: Microfracture beneath point indentations in brittle solids. J. Mater. Sci. 10, 113–122 (1975). doi:10.1007/Bf00541038

    Article  Google Scholar 

  46. Lawn, B.R., Fuller, E.R.: Equilibrium penny-like cracks in indentation fracture. J. Mater. Sci. 10, 2016–2024 (1975). doi:10.1007/Bf00557479

    Article  Google Scholar 

  47. Suh, N.P.: Delamination theory of wear. Wear 25, 111–124 (1973)

    Article  Google Scholar 

  48. Varenberg, M.: Towards a unified classification of wear. Friction 1, 333–340 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the NSF under the Grant Number CMMI-1030703. The Electron Microscopy Center of Argonne National Laboratory is acknowledged for the use of their facilities. Ms. Gwendolyn Reid is acknowledged for proof reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifeng Liao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 1104 kb)

Supplementary material 2 (MPG 1175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Hoffman, E. & Marks, L.D. Nanoscale Abrasive Wear of CoCrMo in In Situ TEM Sliding. Tribol Lett 57, 28 (2015). https://doi.org/10.1007/s11249-015-0471-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0471-z

Keywords

Navigation