Skip to main content
Log in

Understanding the Deformation of Soot Particles/Agglomerates in a Dynamic Contact: TEM In Situ Compression and Shear Experiments

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This work investigates the effect of compression and sliding on diesel soot in a confined space. Experiments were conducted in a high-resolution transmission electron microscope equipped with an in situ nanoindenter mounted with a truncated diamond tip to manipulate single soot particles and agglomerates. It was shown that both, agglomerates and single particles, were quite resistant to load. Agglomerates did not break during the compression tests; instead, partially reversible compaction of the particles to fill the free space was witnessed, proving that strong cohesive forces exist between the soot particles. The primary particles exhibited good elastic behavior under compression, and the agglomerates mirrored this behavior. Sliding tests have shown the ability of both the agglomerates and single primary particles to roll in the contact zone. This work showed that diesel soot is highly resilient to stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Clague, D.H., Donnet, J.B., Wang, T.K., Peng, J.C.M.: A comparison of diesel engine soot with carbon black. Carbon 37, 1553–1565 (1999)

    Article  Google Scholar 

  2. Esagbedo, C., Boehman, A.L., Perez, J.M.: Characteristics of diesel engine soot that lead to excessive oil thickening. Tribol. Int. 47, 194–203 (2012)

    Article  Google Scholar 

  3. LaRocca, A., DiLiberto, G., Shayler, P.J., Fay, M.W.: The nanostructure of soot-in-oil particles and agglomerates from an automotive diesel engine. Tribol. Int. 61, 80–87 (2013)

    Article  Google Scholar 

  4. Bhowmick, H., Biswas, S.K.: Relationship between physical structure and tribology of single soot particles generated by burning ethylene. Tribol. Lett. 44, 139–149 (2011)

    Article  Google Scholar 

  5. Buseck, P.R., Huang, B.J.: Conversion of carbonaceous material to graphite during metamorphism. Geochim. Cosmochim. Acta 49, 2003–2016 (1985)

    Article  Google Scholar 

  6. Bhowmick, H., Majumdar, S.K., Biswas, S.K.: Tribology of ethylene–air diffusion flame soot under dry and lubricated contact conditions. J. Phys. D Appl. Phys. 44, 485401 (2011)

    Article  Google Scholar 

  7. Shooto, N.D., Dikio, E.D.: Synthesis and characterization of diesel, kerosene and candle wax soot’s. Int. J. Electrochem. Sci. 7, 4335–4344 (2012)

    Google Scholar 

  8. Chen, Y., Shah, N., Braun, A., Huggins, F.E., Huffman, G.P.: Electron microscopy investigation of carbonaceous particulate matter generated by combustion of fossil fuels. Energy Fuels 19, 1644–1651 (2005)

    Article  Google Scholar 

  9. Ishiguro, T., Takatori, Y., Akithama, K.: Microstructure of diesel soot particles probed by electron microscopy: first observation of inner core and outer shell. Combust. Flame 108, 231–234 (1997)

    Article  Google Scholar 

  10. Rounds, F.G.: Carbon: cause of diesel engine wear? SAE 770829 (1977)

  11. Ryason, P.R., Chan, I., Gilmore, J.: Polishing wear by soot. Wear 137, 15–24 (1990)

    Article  Google Scholar 

  12. Kim, C., Passut, C., Zang, D.: Relationships among oil composition, combustion-generated soot, and diesel engine valve train wear. SAE 922199 (1992)

  13. Nagai, I., Endo, H., Nakamura, H., Yano, H.: Soot and valve train wear in passenger car diesel engines. SAE 831757 (1983)

  14. George, S., Balla, S., Gautam, M.: Effect of diesel soot contaminated oil on engine. Wear 262, 1113–1122 (2007)

    Article  Google Scholar 

  15. Bardasz, E.A., Carrick, V.A., Ebeling, V.L., George, H.F., Graf, M.M., Kornbrekke, R.E., Pocinki, S.B.: Understanding soot mediated oil thickening through designed experimentation-part 2. GM 6.5 L. SAE 952527 (1995)

  16. Ratoi, M., Spikes, H.A.: The influence of soot and dispersant on ZDDP film thickness and friction. Lubricat. Sci. 17(1), 25–43 (2004)

    Article  Google Scholar 

  17. Chinas-Castillo, F., Spikes, H.A.: The behavior of diluted sooted oils in lubricated contacts. Tribol. Lett. 16(4), 317–322 (2004)

    Article  Google Scholar 

  18. Van Dam, W., Willis, W.W., Cooper, M.W.: The impact of lubricant composition and rheology on wear in heavy duty diesel engines. W.J. Bartz (ed.), Proceedings of the 12th International Colloquium Tribology 2000-Plus, vol. 1, Technische Akademie Esslingen, Jan, 515–525 (2000)

  19. Needelman, W., Madhavan, P.: Review of lubricant contamination and diesel engine wear. SAE 881827 (1988)

  20. Cadman, W., Johnson, J.: The study of the effect of exhaust gas recirculation on engine wear in a heavy-duty diesel engine using analytical ferrography. SAE 860378 (1986).

  21. Gautam, M., Chitoor, K., Durbha, M., Summers, J.C.: Effect of diesel soot contaminated oil on engine wear—investigation of novel oil formulations. Tribol. Int. 32, 687–699 (1999)

    Article  Google Scholar 

  22. Gautam, M., Durbha, M., Chitoor, K., Jaraiedi, M., Mariwalla, N., Ripple D.: Contribution of soot contaminated oils to wear. SAE 981406 (1998)

  23. Gautam, M., Chitoor, K., Balla, S., Keane, M.: Contribution of soot contaminated oils to wear-part II. SAE 1999-01-1519 (1999)

  24. Jao, T.C., Li, S., Yatsunami, K., Chen, S.J., Csontos, A.A., Howe, J.M.: Soot characterization and diesel engine wear. Lubricat. Sci. 16(2), 111–126 (2004)

    Article  Google Scholar 

  25. Howe, J.M., Mori, H., Wang, Z.L.: In situ high-resolution transmission electron microscopy in the study of nanomaterials and properties. MRS Bull. 33(2), 115–121 (2008)

    Article  Google Scholar 

  26. Minor, A.M., Morris Jr, J.W., Stach, E.A.: Quantitative in situ nanoindentation in an electron microscope. App. Phys. Lett. 79, 1625–1627 (2001)

    Article  Google Scholar 

  27. Stach, E.A., Freeman, T., Minor, A.M., Owen, D.K., Cumings, J., Wall, M.A., Chraska, T., Hull, R., Morris Jr, J.W., Zettl, A., Dahmen, U.: Development of a nanoindenter for in situ transmission electron microscopy. Microsc. Microanal. 7, 507–517 (2001)

    Google Scholar 

  28. Li, N., Wang, J., Huang, J.Y., Misra, A., Zhang, X.: In situ TEM observations of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites. Scr. Mater. 63, 363–366 (2010)

    Article  Google Scholar 

  29. Wang, Z.L., Poncharal, P., de Heer, W.A.: Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM. J. Phys. Chem. 61, 1025–1030 (2000)

    Google Scholar 

  30. Han, X., Zheng, K., Zhang, Y.F., Zhang, X., Zhang, Z., Wang, Z.L.: Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 19, 2112–2118 (2007)

    Article  Google Scholar 

  31. Asthana, A., Momeni, K., Prasad, A., Yap, Y.K., Yassar, R.S.: In situ observation of size-scale effects on the mechanical properties of ZnO nanowires. Nanotechnology 22, 265712 (2011)

    Article  Google Scholar 

  32. Deneen, J., Mook, W.M., Minor, A.M., Gerberich, W.W., Carter, C.B.: In situ deformation of silicon nanospheres. J. Mater. Sci. 41, 4477–4483 (2006)

    Article  Google Scholar 

  33. Shan, Z.W., Adesso, G., Cabot, A., Sherburne, M.P., Syed Asif, S.A., Warren, O.L., Chrzan, D.C., Minor, A.M., Alivisatos, A.P.: Ultrahigh stress and strain in hierarchically structured hollow nanoparticles. Nat Mat 7, 947–952 (2008)

    Article  Google Scholar 

  34. Lockwood, A.J., Inkson, B.J.: In situ TEM nanoindentation and deformation of Si-nanoparticle clusters. J. Phys. D Appl. Phys. 42, 035410 (2009)

    Article  Google Scholar 

  35. Carlton, C.E., Ferreira, P.J.: In situ TEM nanoindentation of nanoparticles. Micron 43, 1134–1139 (2012)

    Article  Google Scholar 

  36. Lahouij, I., Dassenoy, F., De Knoop, L., Martin, J.M., Vacher, B.: In situ TEM observation of the behavior of an individual fullerene-like MoS2 nanoparticle in a dynamic contact. Tribol. Lett. 42, 133–140 (2011)

    Article  Google Scholar 

  37. Lahouij, I., Dassenoy, F., Vacher, B., Martin, J.M.: Real time imaging of compression and shear of single fullerene-like MoS2 nanoparticle. Tribol. Lett. 45, 131–141 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by Infineum USA LP as part of their strategic research on soot and soot-induced wear. The authors would like to thank Infineum for their financial support and the permission to publish this work. The authors would also like to thank the CLYM—http://clym.insa-lyon.fr—for the access to the 2010F microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Dassenoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahouij, I., Dassenoy, F., Vacher, B. et al. Understanding the Deformation of Soot Particles/Agglomerates in a Dynamic Contact: TEM In Situ Compression and Shear Experiments. Tribol Lett 53, 91–99 (2014). https://doi.org/10.1007/s11249-013-0246-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0246-3

Keywords

Navigation