Skip to main content
Log in

On the Validity of the Method of Reduction of Dimensionality: Area of Contact, Average Interfacial Separation and Contact Stiffness

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

It has recently been suggested that many contact mechanics problems between solids can be accurately studied by mapping the problem on an effective one-dimensional (1D) elastic foundation model. Using this 1D mapping, we calculate the contact area and the average interfacial separation between elastic solids with nominally flat but randomly rough surfaces. We show, by comparison to exact numerical results, that the 1D mapping method fails even qualitatively. We also calculate the normal interfacial stiffness K and compare it with the result of an analytic study. We attribute the failure of the elastic foundation model to the incorrect treatment of the long-range elastic coupling between the asperity contact regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In a recent paper Popov states: “In Ref. [10] the size of the system was accidentally chosen in such a way that the area-force dependence was correct up to relative large contact. This result, however, cannot be generalized.”.

References

  1. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. A 295, 300 (1966)

    Article  CAS  Google Scholar 

  2. Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear 35, 87 (1975)

    Article  Google Scholar 

  3. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

  4. Almqvist, A., Campañá, C., Prodanov, N., Persson, B.N.J.: Interfacial separation between elastic solids with randomly rough surfaces: comparison between theory and numerical techniques. J. Mech. Phys. Solids 59, 2355 (2011)

    Article  Google Scholar 

  5. Carbone, G., Bottiglione, F.: Asperity contact theories: do they predict linearity between contact area and load. J. Mech. Phys. Solids 56, 2555 (2008)

    Article  Google Scholar 

  6. Ramisetti, S.B., Campañá, C., Anciaux, G., Molinari, J.-F., Müser, M.H., Robbins, M.O.: The autocorrelation function for island areas on self-affine surfaces. J. Phys. Condens. Matter 23, 215004 (2011)

    Article  Google Scholar 

  7. Campañá, C., Müser, M.H., Robbins, M.O.: Elastic contact between self-affine surfaces: comparison of numerical stress and contact correlation functions with analytic predictions. J. Phys. Condens. Matter 20, 354013 (2008)

    Article  Google Scholar 

  8. Persson, B.N.J.: Capillary adhesion between elastic solids with randomly rough surfaces. J. Phys. Condens. Matter 20, 315007 (2008)

    Article  Google Scholar 

  9. Meakin, P.: Fractals, Scaling and Growth Far From Equilibrium. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  10. Geike, T., Popov, V.L.: Mapping of three-dimensional contact problems into one dimension. Phys. Rev. E 76, 036710 (2007)

    Article  Google Scholar 

  11. Heß, M.: Über die Abbildung ausgewhlter dreidimensionaler Kontakte auf Systeme mit niedrigerer räumlicher Dimension. Cuvillier-Verlag, Göttingen (2011)

  12. Pohrt, R., Popov, V.L.: Normal contact stiffness of elastic solids with fractal rough surfaces. Phys. Rev. Lett. 108, 104301 (2012)

    Article  Google Scholar 

  13. Pohrt, R., Popov, V.L., Filippov, A.É.: Normal contact stiffness of elastic solids with fractal rough surfaces for one- and three-dimensional systems. Phys. Rev. E 86, 026710 (2012)

    Article  Google Scholar 

  14. Popov, V.L.: Method of reduction of dimensionality in contact and friction mechanics: a link between micro and macro scales. Friction 1, 41 (2013)

    Google Scholar 

  15. Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965)

    Article  Google Scholar 

  16. Barber, J.R., private communication

  17. Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840 (2001)

    Article  CAS  Google Scholar 

  18. Hyun, S., Pei, L., Molinari, J.-F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, 026117 (2004)

    Article  CAS  Google Scholar 

  19. Berthoud, P., Baumberger, T.: Shear stiffness of a solid–solid multicontact interface. Proc. R. Soc. A 454, 1615 (1998)

    Article  CAS  Google Scholar 

  20. Barber, J.R.: Bounds on the electrical resistance between contacting elastic rough bodies. Proc. R. Soc. A 459, 53 (2003)

    Article  Google Scholar 

  21. Persson, B.N.J.: Relation between interfacial separation and load: A general theory of contact mechanics. Phys. Rev. Lett. 99, 125502 (2007)

    Article  CAS  Google Scholar 

  22. Campañá, C., Müser, M.H.: Contact mechanics of real vs. randomly rough surfaces: a Green’s function molecular dynamics study. EPL 77, 38005 (2007)

    Article  Google Scholar 

  23. Campañá, C., Persson, B.N.J, Müser, M.H.: Transverse and normal interfacial stiffness of solids with randomly rough surfaces. J. Phys. Condens. Matter 23, 085001 (2011)

    Article  Google Scholar 

  24. Akarapu, S., Sharp, T., Robbins, M.O.: Stiffness of contacts between rough surfaces. Phys. Rev. Lett. 106, 204301 (2011)

    Article  Google Scholar 

  25. Carbone, G., Scaraggi, M., Tartaglino, U.: Adhesive contact of rough surfaces: Comparison between numerical calculations and analytical theories. Eur. Phys. J. E 30, 65 (2009)

    Article  CAS  Google Scholar 

  26. Carbone, G., Bottiglione, F.: Contact mechanics of rough surfaces: a comparison between theories. Meccanica 46, 557 (2011)

    Article  Google Scholar 

  27. Lorenz, B., Persson, B.N.J.: Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory. J. Phys. Condens. Matter 21, 015003 (2009)

    Article  CAS  Google Scholar 

  28. Pastewka, L., Prodanov, N., Lorenz, B., Müser, M.H., Robbins, M.O., Persson, B.N.J.: Finite-size scaling in the interfacial stiffness of rough elastic contacts. Phys. Rev. E 87, 062809 (2013)

    Article  Google Scholar 

  29. Popov, V.L., Filippov, A.É.: Force of friction between fractal rough surface and elastomer. Tech. Phys. Lett. 36, 525 (2010)

    Article  CAS  Google Scholar 

  30. Popov, V.L.: Contact Mechanics and Friction, Physical Principles and Applications. Springer, Berlin (2010)

  31. See articles in: Phys. Mesomech. 15(4) (2012)

  32. Popov, V.L., Filippov, A.É.: Applicability of a reduced model to description of real contacts between rough surfaces with different Hirsch indices. Tech. Phys. Lett. 34, 722 (2008)

    Article  CAS  Google Scholar 

  33. Campañá, C., Müser, M.H.: Practical Green’s function approach to the simulation of elastic semi-infinite solids. Phys. Rev. B 74, 075420 (2006)

    Article  Google Scholar 

  34. Pastewka, L., Sharp, T.A., Robbins, M.O.: Seamless elastic boundaries for atomistic calculations. Phys. Rev. B 86, 075459 (2012)

    Article  Google Scholar 

  35. Polonsky, I.A., Keer, L.M.: A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques. Wear 231, 206 (1999)

    Article  CAS  Google Scholar 

  36. Scaraggi, M., Putignano, C., Carbone, G.: Elastic contact of rough surfaces: A simple criterion to make 2D isotropic roughness equivalent to 1D one. Wear 297, 811 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Giuseppe Carbone, Martin Müser and Mark Robbins for useful discussions. L.P. acknowledges funding from the European Commission (Marie-Curie IOF-272619).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo N. J. Persson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyashenko, I.A., Pastewka, L. & Persson, B.N.J. On the Validity of the Method of Reduction of Dimensionality: Area of Contact, Average Interfacial Separation and Contact Stiffness. Tribol Lett 52, 223–229 (2013). https://doi.org/10.1007/s11249-013-0208-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0208-9

Keyword

Navigation