Skip to main content
Log in

Modeling Sliding Contact of Rough Surfaces with Molecularly Thin Lubricants

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The sliding contact between two rough surfaces in the presence of a molecularly thin lubricant layer is investigated. Under very high shear rates, the lubricant is treated as a semi-solid layer with normal and lateral shear-dependent stiffness components obtained from experimental data. The adhesive force in the presence of lubricant is also adapted from the Sub-boundary lubrication model and improved to account for variation in surface energy with penetration into the lubricant layer. A model is then proposed, based on the Improved sub-boundary lubrication model, which accounts for lubricant contact and adhesion and its validity is discussed. The model is in good agreement with published experimental measurements of friction in the presence of molecularly thin lubricant layers and suggests that a molecularly thin lubricant bearing could be successfully used to reduce solid substrate damage at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Vakis, A.I., Eriten, M., Polycarpou, A.A.: Modeling bearing and shear forces in molecularly thin lubricants. Tribol. Lett. 41(3), 573–586 (2011)

    Article  CAS  Google Scholar 

  2. Fukuzawa, K., Hayakawa, K., Matsumura, N., Itoh, S., Zhang, H.: Simultaneously measuring lateral and vertical forces with accurate gap control for clarifying lubrication phenomena at nanometer gap. Tribol. Lett. 37(3), 497–505 (2009)

    Article  Google Scholar 

  3. Vakis, A.I., Polycarpou, A.A.: Head-disk interface nanotribology for Tbit/in2 recording densities: near-contact and contact recording. J. Phys. D Appl. Phys. 43, 22 (2010)

    Article  Google Scholar 

  4. Suh, A.Y., Polycarpou, A.A.: Adhesive contact modeling for sub-5-nm ultralow flying magnetic storage head-disk interfaces including roughness effects. J. Appl. Phys. 97(10), 104328–104329 (2005)

    Article  Google Scholar 

  5. Yeo, C.-D., Sullivan, M., Lee, S.-C., Polycarpou, A.A.: Friction force measurements and modeling in hard disk drives. IEEE. Trans. Magn. 44(1), 157–162 (2008)

    Article  Google Scholar 

  6. Suh, A.Y., Mate, C.M., Payne, R.N., Polycarpou, A.A.: Experimental and theoretical evaluation of friction at contacting magnetic storage slider-disk interfaces. Tribol. Lett. 23(3), 177–190 (2006)

    Article  Google Scholar 

  7. Demirel, A.L., Granick, S.: Transition from static to kinetic friction in a model lubricated system. J. Chem. Phys. 109(16), 6889–6897 (1998)

    Article  CAS  Google Scholar 

  8. Demirel, A.L., Granick, S.: Relaxations in molecularly thin liquid films. J. Phys. Condens. Mat. 8, 9537–9539 (1996)

    Article  CAS  Google Scholar 

  9. Itoh, S., Fukuzawa, K., Hamamoto, Y., Hedong, Z., Mitsuya, Y.: Fiber wobbling method for dynamic viscoelastic measurement of liquid lubricant confined in molecularly narrow gaps. Tribol. Lett. 30(3), 177–189 (2008)

    Article  CAS  Google Scholar 

  10. Fukuzawa, K., Itoh, S., Mitsuya, Y.: Fiber wobbling shear force measurement for nanotribology of confined lubricant molecules. IEEE. Trans. Magn. 39, 2453–2455 (2003)

    Article  CAS  Google Scholar 

  11. Suh, A.Y., Polycarpou, A.A.: Design optimization of sub-5 nm head-disk interfaces using a two-degree-of-freedom dynamic contact model with friction. Int. J. Prod. Dev. 5(3–4), 268–291 (2008)

    Google Scholar 

  12. Lee, S.-C., Polycarpou, A.A.: Microtribodynamics of pseudo-contacting head-disk interfaces intended for 1 Tbit/in2. IEEE. Trans. Magn. 41(2), 812–818 (2005)

    Article  Google Scholar 

  13. Stanley, H.M., Etsion, I., Bogy, D.B.: Adhesion of contacting rough surfaces in the presence of sub-boundary lubrication. J. Tribol. 112(1), 98–104 (1990)

    Article  CAS  Google Scholar 

  14. Israelachvili, J.: Intermolecular and surface forces, second edition: with applications to colloidal and biological systems (Colloid Science). Academic Press, London (1992)

    Google Scholar 

  15. Mate, C.M., Toney, M.F., Leach, K.A.: Roughness of thin perfluoropolyether lubricant films: influence on disk drive technology. IEEE. Trans. Magn. 37(4), 1821–1823 (2001)

    Article  CAS  Google Scholar 

  16. Marchon, B., Dai, Q., Nayak, V., Pit, R.: The physics of disk lubricant in the continuum picture. IEEE. Trans. Magn. 41(2), 616–620 (2005)

    Article  Google Scholar 

  17. Pit, R., Marchon, B.: Direct measurement of lubricant relaxation on a disk surface. IEEE. Trans. Magn. 37(4), 1830–1832 (2001)

    Article  Google Scholar 

  18. Suh, A.Y., Polycarpou, A.A.: Effect of molecularly thin lubricant on roughness and adhesion of magnetic disks intended for extremely high-density recording. Tribol. Lett. 15(4), 365–376 (2003)

    Article  CAS  Google Scholar 

  19. Greenwood, J., Williamson, J.: Contact of nominally flat surfaces. P. Roy Soc. Lond. A Mat. 295(1442), 300–319 (1966)

    Article  CAS  Google Scholar 

  20. Ciavarella, M., Greenwood, J.A., Paggi, M.: Inclusion of ‘‘interaction’’ in the Greenwood and Williamson contact theory. Wear 265(5–6), 729–734 (2008)

    Article  CAS  Google Scholar 

  21. Greenwood, J.A.: A simplified elliptic model of rough surface contact. Wear 261(2), 191–200 (2006)

    Article  CAS  Google Scholar 

  22. Ciavarella, M., Delfine, V., Demelio, G.: A “re-vitalized” Greenwood and Williamson model of elastic contact between fractal surfaces. J. Mech. Phys. Solids 54(12), 2569–2591 (2006)

    Article  CAS  Google Scholar 

  23. Yu, N., Polycarpou, A.A.: Contact of rough surfaces with asymmetric distribution of asperity heights. J. Tribol. 124(2), 367–376 (2002)

    Article  Google Scholar 

  24. Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear 35(1), 87–111 (1975)

    Article  Google Scholar 

  25. Hu, H.-W., Granick, S., Schweizer, K.S.: Static and dynamical structure of confined polymer films. J. Non Cryst. Solids 172–174, 721–728 (1994)

    Article  Google Scholar 

  26. Itoh, S., Takahashi, K., Fukuzawa, K., Amakawa, H., Hedong, Z.: Spreading properties of monolayer lubricant films: effect of bonded molecules. IEEE. Trans. Magn. 45(11), 5055–5060 (2009)

    Article  CAS  Google Scholar 

  27. Guo, Q., Chung, P.S., Jhon, M.S., Choi, H.J.: Nano-rheology of single unentangled polymeric lubricant films. Macromol. Theor. Simul. 17(9), 454–459 (2008)

    Article  CAS  Google Scholar 

  28. Thompson, P.A., Robbins, M.O., Grest, G.S.: Structure and shear response in nanometer-thick films. Isr. J. Chem. 35(1), 93–106 (1995)

    CAS  Google Scholar 

  29. Gee, M.L., McGuiggan, P.M., Israelachvili, J.N., Homola, A.M.: Liquid to solidlike transitions of molecularly thin films under shear. J. Chem. Phys. 93(3), 1895–1906 (1990)

    Article  CAS  Google Scholar 

  30. Brinson, H., Brinson, C.: Polymer engineering science and viscoelasticity: an introduction. Springer, New York (2007)

    Google Scholar 

  31. Shi, X., Polycarpou, A.A.: Investigation of contact stiffness and contact damping for magnetic storage head-disk interfaces. J. Tribol. 130, 1–9 (2008)

    Article  Google Scholar 

  32. Kogut, L., Etsion, I.: A static friction model for elastic-plastic contacting rough surfaces. J. Tribol. 126(1), 34–40 (2004)

    Article  Google Scholar 

  33. Vakis, A.I., Polycarpou, A.A.: Optimization of thermal fly-height control slider geometry for Tbit/in2 recording. Microsyst. Technol. 16(6), 1021–1034 (2010)

    Article  CAS  Google Scholar 

  34. Tani, H., Sakamoto, K., Tagawa, N.: Conformation of ultrathin PFPE lubricants with different structure on magnetic disks—direct observation and MD simulation. IEEE. Trans. Magn. 45(11), 5050–5054 (2009)

    Article  CAS  Google Scholar 

  35. Waltman, R.J., Pocker, D.J., Deng, H., Kobayashi, N., Fujii, Y., Akada, T., Hirasawa, K., Tyndall, G.W.: Investigation of a new cyclotriphosphazene-terminated perfluoropolyether lubricant. Properties and interactions with a carbon surface. Chem. Mater. 15(12), 2362–2375 (2003)

    Article  CAS  Google Scholar 

  36. Lei, R.Z., Gellman, A.J.: Humidity effects on PFPE lubricant bonding to a-CHx overcoats. Langmuir 16(16), 6628–6635 (2000)

    Article  CAS  Google Scholar 

  37. Choi, H.J., Guo, Q., Chung, P.S., Jhon, M.S.: Molecular rheology of perfluoropolyether lubricant via nonequilibrium molecular dynamics simulation. IEEE. Trans. Magn. 43(2), 903–905 (2007)

    Article  CAS  Google Scholar 

  38. Marchon, B., Guo, X.C., Moser, A., Spool, A., Kroeker, R., Crimi, F.: Lubricant dynamics on a slider: “the waterfall effect”. J. Appl. Phys. 105, 7 (2009)

    Article  Google Scholar 

  39. Mate, C.M., Dai, Q., Payne, R.N., Knigge, B.E., Baumgart, P.: Will the numbers add up for sub-7-nm magnetic spacings? Future metrology issues for disk drive lubricants, overcoats, and topographies. IEEE. Trans. Magn. 41(2), 626–631 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This study falls under the Cyprus Research Promotion Foundation’s Framework Programme for Research, Technological Development and Innovation 2009–2010 (DESMI 2009–2010), co-funded by the Republic of Cyprus and the European Regional Development Fund, and specifically under Grant PENEK/0609/03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas A. Polycarpou.

Appendix

Appendix

The following are the expressions of the solid adhesion, contact, and friction forces of the ISBL model. These are to be added to the lubricant adhesion, contact, and friction forces derived in this study to yield the total forces.

The solid adhesive force comprises the contributions of elastically and elastically plastically contacting asperities. It is a function of the maximum surface energy, as well as the radius and number of asperities in contact:

$$ F_{\text{s,solid}} = 2\pi RN\max \left( {\Updelta \gamma } \right)\left[ {0.98\int\limits_{d}^{d + \omega } {J_{ - 0.29}^{0.298} + } 0.79\int\limits_{d + \omega }^{d + 6\omega } {J_{ - 0.321}^{0.356} + 1.19\int\limits_{d + 6\omega }^{d + 110\omega } {J_{ - 0.332}^{0.093} } } } \right] $$
(26)

The integrands are defined as:

$$ J_{\text{c}}^{\text{b}} = \left( {\frac{\omega }{{\omega_{\text{c}} }}} \right)^{\text{b}} \left( {\frac{\varepsilon }{{\omega_{\text{c}} }}} \right)^{\text{c}} \varphi \left( z \right)dz $$
(27)

The local and critical interference of each asperity is ω and ω c, respectively, while ε is the equilibrium spacing. A Gaussian distribution of asperity heights φ (z) is assumed.

The solid contact force is:

$$ P_{\text{solid}} = \frac{2}{3}\left( {\pi RKH\omega_{\text{c}} } \right)N\left[ {\int\limits_{d}^{{d + \omega_{\text{c}} }} {I^{1.5} } + 1.03\int\limits_{{d + \omega_{\text{c}} }}^{{d + 6\omega_{\text{c}} }} {I^{1.425} } + 1.4\int\limits_{{d + 6\omega_{\text{c}} }}^{{d + 110\omega_{\text{c}} }} {I^{1.263} + \frac{3}{K}\int\limits_{{d + 110\omega_{\text{c}} }}^{\infty } {I^{1} } } } \right] $$
(28)

The solid contact force includes contributions from elastically, elastically–plastically, and fully plastically deforming asperities. The hardness is H and the hardness coefficient is K = 0.454 + 0.41ν.

Similarly, the solid friction force is:

$$ Q_{\text{solid}} = \frac{2}{3}\left( {\pi RKH\omega_{\text{c}} } \right)N\left[ {0.52\int\limits_{d}^{{d + \omega_{\text{c}} }} {I^{0.982} } + \int\limits_{{d + \omega_{\text{c}} }}^{{d + 6\omega_{\text{c}} }} { - 0.01I^{4.425} } + 0.091I^{3.425} + 0.85I^{1.425} } \right] $$
(29)

The integrands for both the contact and friction forces are:

$$ I^{\text{b}} = \left( {\frac{z - d}{{\omega_{\text{c}} }}} \right)^{\text{b}} \varphi \left( z \right)dz $$
(30)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vakis, A.I., Polycarpou, A.A. Modeling Sliding Contact of Rough Surfaces with Molecularly Thin Lubricants. Tribol Lett 45, 37–48 (2012). https://doi.org/10.1007/s11249-011-9863-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-011-9863-x

Keywords

Navigation