Skip to main content
Log in

Effect of the Graphite Content on the Tribological Behavior of Al/Gr and Al/30SiC/Gr Composites Processed by In Situ Powder Metallurgy (IPM) Method

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The influence of graphite content on the dry sliding wear characteristics of Al6061/Gr composites along with Al6061/30SiC/Gr hybrid composites has been assessed using a pin-on-disc wear test. The composites with different volume fraction of graphite particles up to 13% were processed by in situ powder metallurgy (IPM) technique. The porosity and hardness of the resultant composites were also examined. It was found that an increase in the graphite content reduced the porosity, hardness, and friction coefficient of both types of composites. The hybrid composites were more porous and exhibited higher hardness and lower coefficient of friction at identical graphite contents. The increased graphite content in the range of 0–13 vol.% resulted in increased wear rate of Al/Gr composites. The Al/30SiC composite exhibited a lower wear rate as compared with the base alloy and graphite addition up to 9 vol.% improved the wear resistance of these hybrid composites. However, more graphite particles addition resulted in increased wear rate. SEM micrographs revealed that the wear mechanism was changed from mostly adhesive in the base alloy sample (Al/0Gr) to the prominently abrasive and delamination wear for Al/Gr and Al/SiC/Gr/composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kumar, S., Balasubramanian, V.: Effect of reinforcement size and volume fraction on the abrasive wear behavior of AA7075Al/SiCp P/M composites—a statistical analysis. Tribol. Int. 43, 414–422 (2010)

    Article  CAS  Google Scholar 

  2. TianChi, W., TongXiang, F., Di, Z., GuoDing, Z.: The fabrication and wear properties of C/Al and (C + SiC)/Al composites based on wood template. Mater. Lett. 60, 2695–2699 (2006)

    Article  Google Scholar 

  3. Jun, D., Yao-hui, L., Si-rong, Y., Wen-fang, L.: Dry sliding friction and wear properties of Al2O3 and carbon short fibres reinforced Al–12Si alloy hybrid composites. Wear 257, 930–940 (2004)

    Article  Google Scholar 

  4. Onat, A.: Mechanical and dry sliding wear properties of silicon carbide particulate reinforced aluminium–copper alloy matrix composites produced by direct squeeze casting method. J. Alloys Compd. 489, 119–124 (2010)

    Article  CAS  Google Scholar 

  5. Unlu, B.S.: Investigation of tribological and mechanical properties Al2O3–SiC reinforced Al composites manufactured by casting or P/M method. Mater. Des. 29, 2002–2008 (2008)

    Article  Google Scholar 

  6. Rohatgi, P.K., Schultz, B.F., Daoud, A., Zhang, W.W.: Tribological performance of A206 aluminum alloy containing silica sand particles. Tribol. Int. 43, 455–466 (2010)

    Article  CAS  Google Scholar 

  7. Rodriguez, J., Poza, P., Garrido, M.A., Rico, A.: Dry sliding wear behaviour of aluminium–lithium alloys reinforced with SiC particles. Wear 262, 292–300 (2007)

    Article  CAS  Google Scholar 

  8. Chang, H., Binner, J., Higginson, R.: Dry sliding wear behaviour of Al(Mg)/Al2O3 interpenetrating composites produced by a pressureless infiltration technique. Wear 268, 166–171 (2010)

    Article  CAS  Google Scholar 

  9. Jung-moo, L., Suk-bong, K., Jianmin, H.: Dry sliding wear of MAO-coated A356/20 vol.% SiCp composites in the temperature range 25–180°C. Wear 264, 75–85 (2008)

    Article  Google Scholar 

  10. Rao, R.N., Das, S., Mondal, D.P., Dixit, G.: Dry sliding wear behaviour of cast high strength aluminium alloy (Al–Zn–Mg) and hard particle composites. Wear 267, 1688–1695 (2009)

    Article  CAS  Google Scholar 

  11. Bai, M., Xue, Q.: Investigation of wear mechanism of SiC particulate-reinforced Al–20Si–3Cu–1 Mg aluminium matrix composites under dry sliding and water lubrication. Tribol. Int. 30, 261–269 (1997)

    Article  CAS  Google Scholar 

  12. Suresha, S., Sridhara, B.K.: Wear characteristics of hybrid aluminium matrix composites reinforced with graphite and silicon carbide particulates. Compos. Sci. Technol. 70, 1652–1659 (2010)

    Article  CAS  Google Scholar 

  13. Basavarajappa, S., Chandramohan, G., Mukund, K., Ashwin, M., Prabu, M.: Dry sliding wear behavior of Al2219/SiCp-Gr hybrid metal matrix composites. J. Mater. Eng. Perform. 15, 668–674 (2006)

    Article  CAS  Google Scholar 

  14. Rao, R.N., Das, S., Mondal, D.P., Dixit, G.: Effect of heat treatment on the sliding wear behaviour of aluminium alloy (Al–Zn–Mg) hard particle composite. Tribol. Int. 43, 330–339 (2010)

    Article  CAS  Google Scholar 

  15. Rao, R.N., Das, S.: Effect of matrix alloy and influence of SiC particle on the sliding wear characteristics of aluminium alloy composites. Mater. Des. 31, 1200–1207 (2010)

    Article  CAS  Google Scholar 

  16. Leng, J., Jiang, L., Wu, G., Tian, S., Chen, G.: Effect of graphite particle reinforcement on dry sliding wear of SiC/Gr/Al composites. Rare Met. Mater. Eng. 38, 1894–1898 (2009)

    Article  CAS  Google Scholar 

  17. Hassan, A.M., Alrashdan, A., Hayajneh, M.T., Mayyas, A.T.: Wear behavior of Al–Mg–Cu-based composites containing SiC particles. Tribol. Int. 42, 1230–1238 (2009)

    Article  CAS  Google Scholar 

  18. Gui, M., Kang, S.B.: Dry sliding wear behavior of plasma-sprayed aluminum hybrid composite coatings. Metall. Mater. Trans. A 32A, 2383–2392 (2001)

    Article  CAS  Google Scholar 

  19. Tang, F., Wu, X., Ge, S., Ye, J., Zhu, H., Hagiwara, M., Schoenung, J.M.: Dry sliding friction and wear properties of B4C particulate-reinforced Al-5083 matrix composites. Wear 264, 555–561 (2008)

    Article  CAS  Google Scholar 

  20. Mondal, A.K., Kumar, S.: Dry sliding wear behaviour of magnesium alloy based hybrid composites in the longitudinal direction. Wear 267, 458–466 (2009)

    Article  CAS  Google Scholar 

  21. Zhan, Y., Zhang, G.: Graphite and SiC hybrid particles reinforced copper composite and its tribological characteristic. J. Mater. Sci. Lett. 22, 1087–1089 (2003)

    Article  CAS  Google Scholar 

  22. Ma, W., Lu, J.: Effect of sliding speed on surface modification and tribological behaviour of copper–graphite composite. Tribol. Lett. 41, 363–370 (2011)

    Article  CAS  Google Scholar 

  23. Jha, A.K., Prasad, S.V., Upadhyaya, G.S.: Dry sliding wear of sintered 6061 aluminium alloy–graphite particle composites. Tribol. Int. 22, 321–327 (1989)

    Article  CAS  Google Scholar 

  24. Ramesh, C.S., NoorAhmed, R., Mujeebu, M.A., Abdullah, M.Z.: Development and performance analysis of novel cast copper–SiC–Gr hybrid composites. Mater. Des. 30, 1957–1965 (2009)

    Article  CAS  Google Scholar 

  25. Chu, H.Y., Lin, J.F.: Experimental analysis of the tribological behavior of electroless nickel-coated graphite particles in aluminum matrix composites under reciprocating motion. Wear 239, 126–142 (2000)

    Article  CAS  Google Scholar 

  26. TedGuo, M.L., Tsao, C.Y.A.: Tribological behavior of aluminum/SiC/nickel-coated graphite hybrid composites. Mater. Sci. Eng. A 333, 134–145 (2002)

    Article  Google Scholar 

  27. Akhlaghi, F., Pelaseyyed, S.A.: Characterization of aluminum/graphite particulate composites synthesized using a novel method termed “in situ powder metallurgy”. Mater. Sci. Eng. A 385, 258–266 (2004)

    Google Scholar 

  28. Akhlaghi, F., ZareBidaki, A.: Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2024–graphite composites produced by in situ powder metallurgy method. Wear 266, 37–45 (2009)

    Article  CAS  Google Scholar 

  29. Zhao, H., Liu, L., Hu, W., Shen, B.: Friction and wear behavior of Ni–graphite composites prepared by electroforming. Mater. Des. 28, 1374–1378 (2007)

    Article  CAS  Google Scholar 

  30. Zhan, Y., Zhang, G.: The role of graphite particles in the high-temperature wear of copper hybrid composites against steel. Mater. Des. 27, 79–84 (2006)

    Article  CAS  Google Scholar 

  31. Akhlaghi, F., Esfandiari, H.: Solid-assisted melt disintegration (SAMD), a novel technique for metal powder production. Mater. Sci. Eng. A 452–453, 70–77 (2007)

    Google Scholar 

  32. Akhlaghi, F., Esfandiari, H.: Aluminium powder particles produced by SAMD technique: typical characteristics and correlations between processing conditions and powder size. Mater. Sci. Technol. 23, 646–652 (2007)

    Article  CAS  Google Scholar 

  33. Akhlaghi, F., DelshadKhatibi, P.: Effect of silicon content on size distribution and morphology of Al–Si powder particles produced by solid assisted melt disintegration (SAMD) method. Powder Metall. 54(2), 153–159 (2011)

    CAS  Google Scholar 

  34. Mahdavi, S., Akhlaghi, F.: Effect of SiC content on the processing, compaction behavior, and properties of Al6061/SiC/Gr hybrid composites. J. Mater. Sci. 46, 1502–1511 (2011)

    Article  CAS  Google Scholar 

  35. Mei-juan, Z., Xiao-hong, Y., Yong-bing, L., Zhan-yi, C., Li-ren, C., Ya-li, P.: Effect of graphite content on wear property of graphite/Al2O3/Mg-9Al-1Zn-0.8Ce composites. Trans. Nonferrous Met. Soc. China 20, 207–211 (2010)

    Article  Google Scholar 

  36. Qing-ju, Q.I.: Evaluation of sliding wear behavior of graphite particle-containing magnesium alloy composites. Trans. Nonferrous Met. Soc. China 16, 1135–1140 (2006)

    Article  Google Scholar 

  37. Rajkumar, K., Aravindan, S.: Tribological performance of microwave sintered copper–TiC–graphite hybrid composites. Tribol. Int. 44, 347–358 (2011)

    Article  CAS  Google Scholar 

  38. Goto, H., Uchijo, K.: Wear mechanism of Al–Si alloy impregnated graphite composite under dry sliding. Wear 259, 613–619 (2005)

    Article  CAS  Google Scholar 

  39. Liu, Y.B., Lim, S.C., Rayb, S., Rohatgi, P.K.: Friction and wear of aluminium–graphite composites: the smearing process of graphite during sliding. Wear 159, 201–205 (1992)

    Article  CAS  Google Scholar 

  40. Ames, W., Alpas, A.T.: Wear mechanisms in hybrid composites of graphite-20 pct SiC in A356 aluminum alloy (Al-7 pct Si-0.3 pct Mg). Metall. Mater. Trans. A 26A, 85–98 (1995)

    Article  CAS  Google Scholar 

  41. Song, J.I., Han, K.S.: Effect of volume fraction of carbon fibers on wear behavior of Al/Al2O3/C hybrid metal matrix composites. Compos. Struct. 39(3–4), 309–318 (1997)

    Article  Google Scholar 

  42. Saidatulakmar, S., ShamsulBahrain, J., Zuhailawati, H., ZainalArifin, A.: The effect of Al2O3 amount on the microstructure and properties of Fe–Cr matrix composites. Metall. Mater. Trans. A 41A, 3452–3457 (2010)

    Google Scholar 

  43. Savaskan, T., Bican, O.: Dry sliding friction and wear properties of Al–25Zn–3Cu–(0–5)Si alloys in the as-cast and heat-treated conditions. Tribol. Lett. 40, 327–336 (2010)

    Article  CAS  Google Scholar 

  44. Jahanmir, S., Suh, N.P., Abrahamson, E.P.: The delamination theory of wear and the wear of a composite surface. Wear 32, 33–49 (1975)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Akhlaghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahdavi, S., Akhlaghi, F. Effect of the Graphite Content on the Tribological Behavior of Al/Gr and Al/30SiC/Gr Composites Processed by In Situ Powder Metallurgy (IPM) Method. Tribol Lett 44, 1–12 (2011). https://doi.org/10.1007/s11249-011-9818-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-011-9818-2

Keywords

Navigation