Skip to main content
Log in

Improved Tribological Behavior of DLC Films Under Water Lubrication by Surface Texturing

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Textured diamond-like carbon (DLC) films with the pattern of parallel grooves were developed by depositing DLC on textured stainless substrates in a PVD system. The texturing effects on tribological performance of DLC in water-lubricated condition were investigated. Results show that introducing specific patterns into DLC film not only retains the low friction coefficients, but also dramatically extends coating lifetime through affecting the coating delamination behavior and graphitization process during friction. Besides the adherence difference induced by surface texturing which could influence the delamination, another possible mechanism, “buffer stripes”, which is characteristic of the lateral soft/hard periodical structure, was proposed by us based on the Micro-Raman spectroscopy and nanoindentation analysis. Additionally, a much lower graphitization for textured DLC during friction may also be responsible for the improved wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. R 37, 129–281 (2002)

    Article  Google Scholar 

  2. Weiler, M., Sattel, S., Giessen, T., Jung, K., Ehrhardt, H., Veerasamy, V.S., Robertson, J.: Preparation and properties of highly tetrahedral hydrogenated amorphous carbon. Phys. Rev. B 53, 1594–1608 (1996)

    Article  CAS  Google Scholar 

  3. Lemoine, P., Quinn, J.P., Maguire, P., McLaughlin, J.A.: Comparing hardness and wear data for tetrahedral amorphous carbon and hydrogenated amorphous carbon thin films. Wear 257, 509–522 (2004)

    Article  CAS  Google Scholar 

  4. Voevodin, A.A., Zabinski, J.S.: Supertough wear-resistant coatings with ‘chameleon’ surface adaptation. Thin Solid Films 370, 223–231 (2000)

    Article  CAS  Google Scholar 

  5. Zhang, S., Sun, D., Fu, Y.Q., Du, H.J.: Toughening of hard nanostructural thin films: a critical review. Surf. Coat Technol. 198, 2–8 (2005)

    Article  CAS  Google Scholar 

  6. Voevodin, A.A., O’Neill, J.P., Zabinski, J.S.: Nanocomposite tribological coatings for aerospace applications. Surf. Coat Technol. 116, 36–45 (1999)

    Article  Google Scholar 

  7. Hogmark, S., Jacobson, S., Larsson, M.: Design and evaluation of tribological coatings. Wear 246, 20–33 (2000)

    Article  CAS  Google Scholar 

  8. Logothetidis, S., Charitidis, C., Gioti, M., Panayiotatos, Y., Handrea, M., Kautek, W.: Comprehensive study on the properties of multilayered amorphous carbon films. Diamond Relat. Mater. 9, 756–760 (2000)

    Article  CAS  Google Scholar 

  9. Etsion, I.: Improving tribological performance of mechanical components by laser surface texturing. Tribol. Lett. 17, 733–737 (2003)

    Article  Google Scholar 

  10. Wang, X.L., Kato, K., Adachi, K., Aizawa, K.: Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water. Tribol. Int. 36, 189–197 (2003)

    Article  CAS  Google Scholar 

  11. Dumitru, G., Romano, V., Weber, H.P., Pimenov, S., Kononenko, T., Hermann, J., Bruneau, S., Gerbig, Y., Shupegin, M.: Laser treatment of tribological DLC films. Diamond Relat. Mater. 12, 1034–1040 (2003)

    Article  CAS  Google Scholar 

  12. Pettersson, U., Jacobson, S.: Friction and wear properties of micro textured DLC coated surfaces in boundary lubricated sliding. Tribol. Lett. 17, 553–559 (2004)

    Article  CAS  Google Scholar 

  13. Shi, J., Lu, Y.F., Chen, X.Y., Cherukuri, R.S., Mendu, K.K., Wang, H., Batta, N.: Phase-graded deposition of diamond-like carbon on nanotips by near-field induced chemical vapor deposition. Appl. Phys. Lett. 86, 131918 (2005)

    Article  Google Scholar 

  14. Shi, J., Lu, Y.F., Cherukuri, R.S., Mendu, K.K., Doerr, D.W., Alexander, D.R., Li, L.P., Chen, X.Y.: Laser-assisted nanoscale deposition of diamond-like carbon films on tungsten tips. Appl. Phys. Lett. 85, 1009–1011 (2004)

    Article  CAS  Google Scholar 

  15. Wilhelmsson, O., Rasander, M., Carlsson, M., Lewin, E., Sanyal, B., Wiklund, U., Eriksson, O., Jansson, U.: Design of nanocomposite low-friction coatings. Adv. Funct. Mater. 17, 1611–1616 (2007)

    Article  CAS  Google Scholar 

  16. Neville, A., Morina, A., Haque, T., Voong, Q.: Compatibility between tribological surfaces and lubricant additives—how friction and wear reduction can be controlled by surface/lube synergies. Tribol. Int. 40, 1680–1695 (2007)

    Article  CAS  Google Scholar 

  17. Ong, C.W., Zhao, X.A., Cheung, J.T., Lam, S.K., Liu, Y., Choy, C.L., Chan, P.W.: Thermal-stability of pulsed-laser deposited diamond-like carbon-films. Thin Solid Films 258, 34–39 (1995)

    Article  CAS  Google Scholar 

  18. Liu, Y., Erdemir, A., Meletis, E.I.: A study of the wear mechanism of diamond-like carbon films. Surf. Coat. Technol. 82, 48–56 (1996)

    Article  CAS  Google Scholar 

  19. Zhou, Z.F., Li, K.Y., Bello, I., Lee, C.S., Lee, S.T.: Study of tribological performance of ECR-CVD diamond-like carbon coatings on steel substrates Part 2. The analysis of wear mechanism. Wear 258, 1589–1599 (2005)

    Article  CAS  Google Scholar 

  20. Haque, T., Morina, A., Neville, A., Kapadia, R., Arrowsmith, S.: Effect of oil additives on the durability of hydrogenated DLC coating under boundary lubrication conditions. Wear 266, 147–157 (2009)

    Article  CAS  Google Scholar 

  21. Wang, L.P., Zhang, J.Y., Zeng, Z.X., Lin, Y.M., Hu, L.T., Xue, Q.J.: Fabrication of a nanocrystalline Ni–Co/CoO functionally graded layer with excellent electrochemical corrosion and tribological performance. Nanotechnology 17, 5715 (2006)

    Article  CAS  Google Scholar 

  22. Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)

    Article  CAS  Google Scholar 

  23. Wang, Y., Wang, L., Zhang, G., Wang, S.C., Wood, R.J.K., Xue, Q.: Effect of bias voltage on microstructure and properties of Ti-doped graphite-like carbon films synthesized by magnetron sputtering. Surf. Coat. Technol. 205, 793–800 (2010)

    Article  CAS  Google Scholar 

  24. Kulikovsky, V., Vorlicek, V., Bohac, P., Stranyanek, M., Ctvrtlik, R., Kurdyumov, A.: Mechanical properties of amorphous and microcrystalline silicon films. Thin Solid Films 516, 5368–5375 (2008)

    Article  CAS  Google Scholar 

  25. Voevodin, A.A., Capano, M.A., Laube, S.J.P., Donley, M.S., Zabinski, J.S.: Design of a Ti/TiC/DLC functionally gradient coating based on studies of structural transitions in Ti–C thin films. Thin Solid Films 298, 107–115 (1997)

    Article  CAS  Google Scholar 

  26. Gioti, M., Logothetidis, S., Charitidis, C.: Stress relaxation and stability in thick amorphous carbon films deposited in layer structure. Appl. Phys. Lett. 73, 184–186 (1998)

    Article  CAS  Google Scholar 

  27. Bullen, A.J., O’Hara, K.E., Cahill, D.G., Monteiro, O., von Keudell, A.: Thermal conductivity of amorphous carbon thin films. J. Appl. Phys. 88, 6317–6320 (2000)

    Article  CAS  Google Scholar 

  28. Bhushan, B.: Introduction to tribology. China Machine Press, Beijing (2006)

    Google Scholar 

  29. Cho, S.J., Lee, K.R., Eun, K.Y., Hahn, J.H., Ko, D.H.: Determination of elastic modulus and Poisson’s ratio of diamond-like carbon films. Thin Solid Films 341, 207–210 (1999)

    Article  CAS  Google Scholar 

  30. Cho, S.J., Lee, K.R., Eun, K.Y., Jeong, J.H., Kwon, D.: A method of determining the elastic properties of diamond-like carbon films. Diamond Relat. Mater. 8, 1067–1072 (1999)

    Article  CAS  Google Scholar 

  31. Berezina, S., Zinin, P.V., Schneider, D., Fei, D., Rebinsky, D.A.: Combining Brillouin spectroscopy and laser-SAW technique for elastic property characterization of thick DLC films. Ultrasonics 43, 87–93 (2004)

    Article  CAS  Google Scholar 

  32. Isono, Y., Namazu, T., Terayama, N.: Development of AFM tensile test technique for evaluating mechanical properties of sub-micron thick DLC films. J. Microelectromech. Syst. 15, 169–180 (2006)

    Article  Google Scholar 

  33. Schneider, D., Meyer, C.F., Mai, H., Schoneich, B., Ziegele, H., Scheibe, H.J., Scheibe, H.J., Lifshitz, Y.: Non-destructive characterization of mechanical and structural properties of amorphous diamond-like carbon films. Diamond Relat. Mater. 7, 973–980 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Basic Research Program of China (973 Program) (NO. 2011CB706603), and the National Natural Science Foundation of China (NO. 50905178). The authors gratefully acknowledge Mr. Yaonan Zhang and Guohui Zhao for supporting the numerical simulation at Lanzhou branch of supercomputing CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Q., Wang, L., Wang, Y. et al. Improved Tribological Behavior of DLC Films Under Water Lubrication by Surface Texturing. Tribol Lett 41, 439–449 (2011). https://doi.org/10.1007/s11249-010-9730-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9730-1

Keywords

Navigation