Skip to main content
Log in

Compression Heating and Cooling in Elastohydrodynamic Contacts

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this study, the infrared temperature mapping technique, originally developed by Sanborn and Winer (Trans ASME J Tribol 93:262–271, 1971) and extended by Spikes et al. (Tribol Lett 17(3):593–605, 2004), has been made more sensitive and used to study the temperature rise of elastohydrodynamic contacts in pure rolling. Under such conditions lubricant shear heating within the contact is considered negligible and this allows temperature changes due to lubricant compression to be investigated. Pure rolling surface temperature distributions have been obtained for contacts lubricated with a range of lubricants, included a group I, and group II mineral oil, a polyalphaolefin (group IV), the traction fluid Santotrac 50 and 5P4E, a five-ring polyphenyl-ether. Resulting maps show the temperature rise in the contact increases in the inlet due to compression heating and then decreases and in most cases becomes negative in the exit region due to the effect of decompression. Temperature changes increase with entrainment speed but in the current tests are always very small, and less than 1 °C. Contact temperature rises from compression were compared to those from sliding contacts (where a slide-roll ratio of 0.5 was applied). Here the contribution to the contact temperature from compression is shown to decrease dramatically with entrainment speed. The lubricant 5P4E is found to behave differently from other lubricants tested in that it showed a peak in temperature at the outlet. This effect becomes more pronounced with increasing speed, and has tentatively been attributed to a phase change in the exit region. Using moving heat source theory, the measured temperature distributions have been converted to maps showing rate of heat input into each surface and the latter compared with theory. Qualitative agreement between theory and experiment is found, and a more accurate theoretical comparison is the subject of ongoing study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

α:

Pressure–viscosity coefficient (GPa−1)

ε:

Coefficient of thermal expansivity (k−1)

χ :

Thermal diffusivity of surface material (m2/s)

ρ :

Mass density of surface material (kg/m3)

σ :

Specific heat of surface material (J/kg K)

η :

Lubricant dynamic viscosity (Pa s)

η 0 :

Lubricant dynamic viscosity at inlet (Pa s)

δT :

Temperature rise due to single heat source (°C)

A :

Area of element in thermal analysis (m2)

C :

Jaeger heat transfer coefficient (km2/W)

c :

Pressure thermal expansivity coefficient (Pa−1)

h :

Film thickness (m)

i, j:

Locations of temperatures (dimensionless)

k, l:

Locations of heat inputs (dimensionless)

K :

Thermal conductivity of the surface material (W/mK)

p r :

Hertzian pressure (GPa)

p max :

Maximum Hertzian pressure (GPa)

\( \dot{q} \) :

Heat flux per unit area into surface (W/m2)

R :

Distance between points of heat input and temperature rise (m)

T :

Absolute temperature of contact (K°)

ΔT :

Temperature rise due to collection of heat sources (°C)

ΔU :

Mean velocity of lubricant through the film (m)

x, y:

Locations of heat inputs and temperature rises (m)

References

  1. Gohar, R.: Elastohydrodynamics, 2nd edn, p. 237. Imperial College Press, London (2001)

    Google Scholar 

  2. Sanborn, D.M., Winer, W.O.: Fluid rheological effects in sliding elastohydrodynamic point contacts. Trans. ASME J. Tribol. 93, 262–271 (1971)

    Google Scholar 

  3. Spikes, H.A., Anghel, V., Glovnea, R.: Measurement of the rheology of lubricant films in elastohydrodynamic contacts. Tribol. Lett. 17(3), 593–605 (2004). doi:10.1023/B:TRIL.0000044509.82345.16

    Article  CAS  Google Scholar 

  4. Reddyhoff, T., Spikes, H.A., Olver, A.V.: Improved temperature mapping of elasto-hydrodynamic contacts. Proc. Inst. Mech. Eng. Part J (2009) (in press)

  5. Jagi, K., Kyogoku, K., Nakahara, T.: Measurements of temperature distributions around longitudinally grooved rough surfaces in sliding elastohydrodynamic point contacts. Tribol. Trans. 49, 282–289 (2006)

    Google Scholar 

  6. Imado, K., Kidol, Y., Miyagawal, H., Hirano, F.: A study of temperature rise in oil due to compression. Proc. Inst. Mech. Eng. Part J 212, 291–299 (1998). doi:10.1243/1350650981542100

    Article  Google Scholar 

  7. Salehizadeh, H., Sake, K.: Thermal non-newtonian elastohydrodynamic lubrication of roiling line contacts. ASME J. Tribol. 113, 481–491 (1991). doi:10.1115/1.2920649

    Article  Google Scholar 

  8. Kaneta, M., Shigeta, T., Yang, P.: Effects of compressive hearting on traction force. Trans. ASME J. Tribol. 127, 435–442 (2005). doi:10.1115/1.1843153

    Article  Google Scholar 

  9. Sadeghi, F., Sui, P.C.: Thermal elastohydrodynamic lubrication of rolling/sliding contacts. ASME. J. Tribol. 112, 189–195 (1990). doi:10.1115/1.2920241

    Article  Google Scholar 

  10. Kim, H.K., Sadeghi, F.: Three dimensional temperature distribution in EHD lubrication: part I—circular contact. Trans. ASME J. Tribol. 114, 32–41 (1992). doi:10.1115/1.2920864

    Article  CAS  Google Scholar 

  11. Fairlie, R., Goodyer, C.E., Berzins, M., Scales, L.E.: Numerical modelling of thermal effects in elastohydrodynamic lubrication solvers. In: Dowson, D., Lubrecht, A.A., Dalmaz, G., Priest, M. (eds.) Tribological Research and Design for Engineering Systems, Proceedings of the 29th Leeds-Lyon Symposium on Tribology, pp. 675–683. Elsevier Science, Amsterdam (2003)

  12. Ausherman, V.K., Nagaraj, H.S., Sanborn, D.M., Winer, W.O.: Infrared temperature mapping in elastohydrodynamic lubrication. Trans. ASME 98, 236–243 (1976)

    Google Scholar 

  13. Pandey, R.K., Ghosh, M.K.: Thermal effects on film thickness and traction in rolling/sliding EHL line contacts-an accurate inlet zone analysis. Wear 192, 118–127 (1996). doi:10.1016/0043-1648(95)06778-7

    Article  CAS  Google Scholar 

  14. Pandey, R.K., Ghosh, M.K.: A thermal analysis of traction in elastohydrodynamic rolling/sliding line contacts. Wear 216, 106–114 (1996). doi:10.1016/S0043-1648(98)00151-3

    Article  Google Scholar 

  15. Bair, S.: Accurate measurements of pressure-viscosity behaviour in lubricants. Trans. ASME J. Tribol. 45, 390–396 (2002). doi:10.1080/10402000208982564

    CAS  Google Scholar 

  16. Jacobson, B.: A high pressure-short time shear strength analyzer for lubricants. Presented at the ASME-ASLE Joint Lubrication Conference, San Diego, California. J. Tribol. 107, 220–223 (1984)

    Article  Google Scholar 

  17. Sugimura, J., Hashimoto, M., Yamamoto, Y.: Study of elastohydrodynamic contacts with fluorescence microscope. In: Dowson, D., et al. (eds.) Thin Films and Tribological Interfaces, pp. 609–617. Elsevier, Amsterdam (2000)

  18. Evans, C.R., Johnson, K.L.: Rheological properties of elastohydrodynamic lubricants. Proc. Inst. Mech. Eng. 200(C5), 303–312 (1986)

    Google Scholar 

  19. Rudnick, L.R.: Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology. Taylor & Francis, Boca Raton (2006)

    Google Scholar 

  20. Evans, C.R., Johnson, K.L.: Regimes of traction in elastohydrodynamic lubrication. Proc. Inst. Mech. Eng. 200(C5), 313–324 (1986)

    Google Scholar 

  21. Hamrock, B.J., Dowson, D.: Ball Bearing Lubrication, the Elastohydrodynamics of Elliptical Contacts. Wiley, London (1981)

    Google Scholar 

  22. Jaeger, J.C.: Moving sources of heat and temperature at sliding contacts. Proc. R. Soc. NSW 76, 203–224 (1942)

    Google Scholar 

  23. Bos, J., Moes, H.: Frictional heating of tribological contacts. Trans. ASME J. Tribol. 117, 171–176 (1995). doi:10.1115/1.2830596

    Article  Google Scholar 

  24. Johnston, G.J., Wayte, R., Spikes, H.A.: The measurement and study of very thin lubricant films in concentrated contacts. Tribol. Trans. 34, 187–194 (1991). doi:10.1080/10402009108982026

    Article  CAS  Google Scholar 

  25. Crook, A.W.: The lubrication of rollers, III theoretical discussion of friction and the temperatures in the oil film. Proc. R. Soc. Lond. 254(1040), 237–258 (1961)

    ADS  Google Scholar 

  26. Cheng, H.S., Sternlicht, B.: A numerical solution for pressure, temperature, and film thickness between two infinitely long, lubricated rolling and sliding cylinders under heavy loads. ASME J. Basic Eng. 87, 695–707 (1965)

    Google Scholar 

  27. Larsson, R., Larsson, P.O., Eriksson, E., Sjoberg, M., Huglund, E.: Lubricant properties for input to hydrodynamic and elastohydrodynamic lubrication analyses. Proc. Inst. Mech. Eng. Part J 214, 17–27 (2000)

    Article  Google Scholar 

  28. Cann, P.M., Spikes, H.A.: Measurement of pressure distribution in EHL—development of method and application to dry static contacts. Trans. ASME J. Tribol. 48(4), 474–483 (2005)

    CAS  Google Scholar 

  29. Gardiner, D.J., Baird, E., Craggs, C., Dare-Edwards, M.P., Bell, J.C.: Raman microspectroscopy of a working elastohydrodynamic contact. Lubr Sci. 1, 301–313 (1989). doi:10.1002/ls.3010010402

    Article  CAS  Google Scholar 

  30. Anghel, V., Glovnea, R.P., Spikes, H.A.: Friction and film-forming behaviour of five traction fluids. J. Synth. Lubr 21, 13–32 (2004). doi:10.1002/jsl.3000210103

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Reddyhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddyhoff, T., Spikes, H.A. & Olver, A.V. Compression Heating and Cooling in Elastohydrodynamic Contacts. Tribol Lett 36, 69–80 (2009). https://doi.org/10.1007/s11249-009-9461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9461-3

Keywords

Navigation