Skip to main content
Log in

Effects of transgenic overexpression of diapause hormone and diapause hormone receptor genes on non-diapause silkworm

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Diapause is a state of developmental arrest that is most often observed in arthropods, especially insects. The domesticated silkworm, Bombyx mori, is a typical insect that enters diapause at an early embryonic stage. Previous studies have revealed that the diapause hormone (DH) signaling molecules, especially the core members DH and DH receptor 1 (DHR1), are crucial for the determination of embryonic diapause in diapause silkworm strains. However, whether they function in non-diapause silkworm strains remains largely unknown. Here, we generated two transgenic lines overexpressing DH or DHR1 genes in a non-diapause silkworm strain, Nistari. Our results showed that developmental expression patterns of DH and DHR1 are quite similar in transgenic silkworms: both genes are highly expressed in the mid to late stages of pupae and are most highly expressed in day-6 pupae but are expressed at very low levels in other developmental stages. Moreover, the overexpression of DH or DHR1 can affect the expression of diapause-related genes but is not sufficient to induce embryonic diapause in their offspring. This study provides new insights into the function of DH and DHR1 in a non-diapause silkworm strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Denlinger DL (2002) Regulation of diapause. Annu Rev Entomol 47:93–122

    Article  CAS  PubMed  Google Scholar 

  • Dubrovsky EB (2005) Hormonal cross talk in insect development. Trends Endocrinol Metab 16(1):6–11

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa K (1957) The diapause hormone of the silkworm, Bombyx mori. Nature 179:1300–1301

    Article  CAS  Google Scholar 

  • Homma T, Watanabe K, Tsurumaru S, Kataoka H, Imai K, Kamba M, Niimi T, Yamashita O, Yaginuma T (2006) G protein-coupled receptor for diapause hormone, an inducer of Bombyx embryonic diapause. Biochem Biophys Res Commun 344(1):386–393

    Article  CAS  PubMed  Google Scholar 

  • Horn C, Wimmer EA (2000) A versatile vector set for animal transgenesis. Dev Genes Evol 210(12):630–637

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Yang J, Shen Z, Chen Y, Shi L, Zhou N (2016) Agonist-mediated activation of Bombyx mori diapause hormone receptor signals to extracellular signal-regulated kinases 1 and 2 through Gq-PLC-PKC-dependent cascade. Insect Biochem Mol Biol 75:78–88

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Takahashi M, Kihara S, Niimi T, Yamashita O, Yaginuma T (2014) Cloning of cDNA encoding a Bombyx mori homolog of human oxidation resistance 1 (OXR1) protein from diapause eggs, and analyses of its expression and function. J Insect Physiol 68:58–68

    Article  CAS  PubMed  Google Scholar 

  • Mitsumasu K, Azuma M, Niimi T, Yamashita O, Yaginuma T (2005) Membrane-penetrating trehalase from silkworm Bombyx mori. Molecular cloning and localization in larval midgut. Insect Mol Biol 14(5):501–508

    Article  CAS  PubMed  Google Scholar 

  • Murphy WJ, Collier GE (1997) A molecular phylogeny for aplocheiloid fishes (Atherinomorpha, Cyprinodontiformes): the role of vicariance and the origins of annualism. Mol Biol Evol 14(8):790–799

    Article  CAS  PubMed  Google Scholar 

  • Niimi T, Yamashita O, Yaginuma T (1993) Developmental profile of the gene expression of a Bombyx homolog of mammalian sorbitol dehydrogenase during embryogenesis in non-diapause eggs. Comp Biochem Physiol B 106(2):437–442

    Article  CAS  PubMed  Google Scholar 

  • Riddiford LM (2012) How does juvenile hormone control insect metamorphosis and reproduction? Gen Comp Endocrinol 179(3):477–484

    Article  CAS  PubMed  Google Scholar 

  • Rubio RO, Suzuki A, Mitsumasu K, Homma T, Niimi T, Yamashita O, Yaginuma T (2011) Cloning of cDNAs encoding sorbitol dehydrogenase-2a and b, enzymatic characterization, and up-regulated expression of the genes in Bombyx mori diapause eggs exposed to 5°C. Insect Biochem Mol Biol 41(6):378–387

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Oguchi M, Menjo N, Imai K, Saito H, Ikeda M, Isobe M, Yamashita O (1993) Precursor polyprotein for multiple neuropeptides secreted from the suboesophageal ganglion of the silkworm Bombyx mori: characterization of the cDNA encoding the diapause hormone precursor and identification of additional peptides. Proc Natl Acad Sci U S A 90(8):3251–3255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato A, Sokabe T, Kashio M, Yasukochi Y, Tominaga M, Shiomi K (2014) Embryonic thermosensitive TRPA1 determines transgenerational diapause phenotype of the silkworm, Bombyx mori. Proc Natl Acad Sci U S A 111(13):E1249–E1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiomi K, Takasu Y, Kunii M, Tsuchiya R, Mukaida M, Kobayashi M, Sezutsu H, Ichida Takahama M, Mizoguchi A (2015) Disruption of diapause induction by TALEN-based gene mutagenesis in relation to a unique neuropeptide signaling pathway in Bombyx. Sci Rep 5:15566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su ZH, Ikeda M, Sato Y, Saito H, Imai K, Isobe M, Yamashita O (1994) Molecular characterization of ovary trehalase of the silkworm, Bombyx mori and its transcriptional activation by diapause hormone. Biochim Biophys Acta 1218(3):366–374

    Article  CAS  PubMed  Google Scholar 

  • Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 8(1):81–84

    Google Scholar 

  • Tauber MJ, Tauber CA, Masaki S (1986) Seasonal adaptations of insects. Oxford University Press, Oxford, p 414

    Google Scholar 

  • Uehara H, Senoh Y, Yoneda K, Kato Y, Shiomi K (2011) An FXPRLamide neuropeptide induces seasonal reproductive polyphenism underlying a life-history tradeoff in the tussock moth. PLoS ONE 6(8):e24213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GH, Xia QY, Cheng DJ, Duan J, Zhao P, Chen J, Zhu L (2008) Reference genes identified in the silkworm Bombyx mori during metamorphism based on oligonucleotide microarray and confirmed by qRT-PCR. Insect Sci 15(5):405–413

    Article  Google Scholar 

  • Xu WH, Sato Y, Ikeda M, Yamashita O (1995) Molecular characterization of the gene encoding the precursor protein of diapause hormone and pheromone biosynthesis activating neuropeptide (DH-PBAN) of the silkworm, Bombyx mori and its distribution in some insects. Biochim Biophys Acta 1261(1):83–89

    Article  PubMed  Google Scholar 

  • Xu L, Liang H, Niu Y, Wang Y, Sima Y, Xu S (2012) Differential expression of the Bombyx mori diapause-termination timer gene Ea4 in diapause-inducing temperature and photoperiod. Arch Insect Biochem Physiol 79(3):182–194

    Article  CAS  PubMed  Google Scholar 

  • Yamada N, Kataoka H, Mizoguchi A (2017) Myosuppressin is involved in the regulation of pupal diapause in the cabbage army moth Mamestra brassicae. Sci Rep 7:41651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita O (1996) Diapause hormone of the silkworm, Bombyx mori: structure, gene expression and function. J Insect Physiol 42(7):669–679

    Article  CAS  Google Scholar 

  • Zeng WH, Wang RY, Zhang TY, Gong CY, Zuo WD, Liu RP, Ou Y, Xu HF (2017) Cloning and expression analysis of BmYki gene in silkworm, Bombyx mori. PLoS ONE 12(8):e0182690

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Aichun Zhao of Southwest University, China, for valuable comments on this manuscript. This work was supported by Chongqing Research Program of Basic Research and Frontier Technology (cstc2017jcyjBX0041) and Academician Funds of Chongqing (cstc2015jcyjys80001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanfu Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1 Fluorescent screening of A4G4, UASDH and UASDHR1 transgenic lines. (TIFF 1519 kb)

11248_2017_45_MOESM2_ESM.tif

Supplementary Fig. 2 Detection of transgenic silkworm lines using genomic PCR. Red arrowheads indicate the target fragments amplified using genomic PCR primers. The amplicons were confirmed by DNA sequencing. (TIFF 149 kb)

11248_2017_45_MOESM3_ESM.tif

Supplementary Fig. 3 Confirmation of DH and DHR1 overexpression in transgenic silkworms. Relative mRNA expression levels of DH (A) and DHR1 (B) in transgenic silkworm moths were detected by qRT-PCR. Moths of WT, UASDH, and UASDHR1 were used as the control. Error bars represent mean ± SD of three independent replicates. (TIFF 111 kb)

Supplementary Table 1 Primers used in this study. (DOCX 17 kb)

Supplementary Table 2 Summary of injection of the constructed expression vectors. (DOCX 12 kb)

Supplementary Table 3 Identification of piggyBac integration sites using inverse PCR. (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, C., Zeng, W., Zhang, T. et al. Effects of transgenic overexpression of diapause hormone and diapause hormone receptor genes on non-diapause silkworm. Transgenic Res 26, 807–815 (2017). https://doi.org/10.1007/s11248-017-0045-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-017-0045-y

Keywords

Navigation