Skip to main content

Advertisement

Log in

Genetically engineered livestock for agriculture: a generation after the first transgenic animal research conference

  • TARC X
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

At the time of the first Transgenic Animal Research Conference, the lack of knowledge about promoter, enhancer and coding regions of genes of interest greatly hampered our efforts to create transgenes that would express appropriately in livestock. Additionally, we were limited to gene insertion by pronuclear microinjection. As predicted then, widespread genome sequencing efforts and technological advancements have profoundly altered what we can do. There have been many developments in technology to create transgenic animals since we first met at Granlibakken in 1997, including the advent of somatic cell nuclear transfer-based cloning and gene editing. We can now create new transgenes that will express when and where we want and can target precisely in the genome where we want to make a change or insert a transgene. With the large number of sequenced genomes, we have unprecedented access to sequence information including, control regions, coding regions, and known allelic variants. These technological developments have ushered in new and renewed enthusiasm for the production of transgenic animals among scientists and animal agriculturalists around the world, both for the production of more relevant biomedical research models as well as for agricultural applications. However, even though great advancements have been made in our ability to control gene expression and target genetic changes in our animals, there still are no genetically engineered animal products on the market for food. World-wide there has been a failure of the regulatory processes to effectively move forward. Estimates suggest the world will need to increase our current food production 70 % by 2050; that is we will have to produce the total amount of food each year that has been consumed by mankind over the past 500 years. The combination of transgenic animal technology and gene editing will become increasingly more important tools to help feed the world. However, to date the practical benefits of these technologies have not yet reached consumers in any country and in the absence of predictable, science-based regulatory programs it is unlikely that the benefits will be realized in the short to medium term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey R (ed) (2002) Global warming and other eco myths: how the environmental movement uses false science to scare us to death. Prima Lifestyles, Washington, p 59

    Google Scholar 

  • Bleck GT, White BR, Miller DJ, Wheeler MB (1998) Production of bovine α-lactalbumin in the milk of transgenic pigs. J Anim Sci 76:3072–3078

    CAS  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–68

    Article  CAS  PubMed  Google Scholar 

  • Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109:17382–17387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark J, Whitelaw CBA (2003) A future for transgenic livestock. Nat Rev Genet 4:825–833

    Article  CAS  PubMed  Google Scholar 

  • Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, Dos Santos-Neto PC, Nguyen TH, Crénéguy A, Brusselle L, Anegón I, Menchaca A (2015) Efficient generation of Myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS ONE 10:e0136690. doi:10.1371/journal.pone.0136690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Y, Vaught TD, Boone J, Chen S-H, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE, Cowell-Lucero JL, Wells KD, Colman A, Polejaeva IA, Ayares DL (2002) Targeted disruption of the α1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20:251–255

    Article  CAS  PubMed  Google Scholar 

  • Denning C, Burl S, Ainslie A, Bracken J, Dinnyes A, Fletcher J, King T, Ritchie M, Ritchie WA, Rollo M, de Sousa P, Travers A, Wilmut I, Clark AJ (2001) Deletion of the |[alpha]|(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nat Biotechnol 19:559–562

    Article  CAS  PubMed  Google Scholar 

  • Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483

    Article  CAS  PubMed  Google Scholar 

  • Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucl Acids Res. 33:5978–5990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahrenkrug SC, Blake A, Carlson DF, Doran T, Van Eenennaam A, Faber D, Galli C, Hackett PB, Li N, Maga EA, Murray JD, Stotish R, Sullivan E, Taylor JF, Walton M, Wheeler M, Whitelaw B, Glenn BP (2010) Precision genetics for complex objectives in animal agriculture. J Anim Sci 88:2530–2539

    Article  CAS  PubMed  Google Scholar 

  • FDA (2009) Guidance 187: Regulation of genetically engineered animals containing heritable recombinant DNA constructs. www.fda.gov/RegulatoryInformation/Guidances/default.htm

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, Rottmann O, Vincent A, Zhang L, Jenkins S, Niersbach H, Kind AJ, Gregory PD, Schnieke AE, Platzer J (2011) Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS ONE 6:e21045. doi:10.1371/journal.pone.0021045 Epub 2011 Jun 13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golding MC, Long CR, Carmell MA, Hannon GJ, Westhusin ME (2006) Suppression of prion protein in livestock by RNA interference. Proc Natl Acad Sci USA 103:5285–5290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golovan SP, Meidinger RG, Ajakaiye A, Cottrill M, Wiederkehr MZ, Barney DJ, Plante C, Pollard JW, Fan MZ, Hayes MA, Laursen J, Hjorth JP, Hacker RR, Phillips JP, Forsberg CW (2001) Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol. 19:741–745

    Article  CAS  PubMed  Google Scholar 

  • Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 1985(315):680–683

    Article  Google Scholar 

  • Ivics Z, Hackett PB, Plasterk RH, Izsvák Z (1997) Molecular reconstruction of sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    Article  CAS  PubMed  Google Scholar 

  • Jabed A, Wagner S, McCracken J, Wells DN, Laible G (2012) Targeted microRNA expression in dairy cattle directs production of β-lactoglobulin-free, high-casein milk. Proc Natl Acad Sci USA 109:16811–16816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  • Kues WA, Niemann H (2011) Advances in farm animal transgenesis. Prev Vet Med 102:146–156

    Article  PubMed  Google Scholar 

  • Liable G (2009) Enhancing livestock through genetic engineering—recent advances and future prospects. Comp Imm Microbiol Infect Dis 32:123–137

    Article  Google Scholar 

  • Lu KH, Gordon I, Gallagher M, McGovern H (1987) Pregnancy established in cattle by transfer of embryos derived from in vitro fertilisation of oocytes matured in vitro. Vet Rec 121:259–260

    Article  CAS  PubMed  Google Scholar 

  • Maga EA, Murray JD (1995) Mammary gland expression of transgenes and the potential for altering the properties of milk. Bio/Technology 13:1452–1457

    Article  CAS  PubMed  Google Scholar 

  • Maga EA, Murray JD (2010) Welfare applications of genetically engineered animals for use in agriculture. J Anim Sci 88:1588–1591

    Article  CAS  PubMed  Google Scholar 

  • Maga EA, Sargent RG, Zeng H, Pati S, Zarling DA, Oppenheim SM, Collette NMB, Moyer AL, Conrad-Brink JS, Rowe JD, BonDurant RH, Anderson GB, Murray JD (2003) Increased efficiency of transgenic livestock production. Transgenic Res 12:485–496

    Article  CAS  PubMed  Google Scholar 

  • Maga EA, Shoemaker CF, Rowe JD, BonDurant RH, Anderson GB, Murray JD (2006) Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland. J Dairy Sci 89:518–524

    Article  CAS  PubMed  Google Scholar 

  • McKnight RA, Shamay A, Sankaran L, Wall RJ, Hennighausen L (1992) Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. Proc Natl Acad Sci U S A 89:6943–6947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    Article  CAS  PubMed  Google Scholar 

  • Murray JD, Maga EA (1999) Changing the composition and properties of milk. In: Murray JD, Anderson GB, Oberbauer AM, McGloughlin MM (eds) Transgenic animals in agriculture. CAB International, Wallingham, pp 193–208

    Google Scholar 

  • Murray JD, Maga EA (2010) Is there a risk from not using GE animals? Transgenic Res 19:357–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray JD, Anderson GB, Oberbauer AM, McGloughlin MM (eds) (1999) Transgenic animals in agriculture. CAB International, Wallingham 290 pp

    Google Scholar 

  • Naldini L, Bloemer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  CAS  PubMed  Google Scholar 

  • Nancarrow CD, Murray JD, Boland MP, Sutton R, Hazelton IG (1984) Effect of gonadotrophin releasing hormone in the production of single-cell embryos for pronuclear injection of foreign genes. In: Lindsay DR, Pearce DT (eds) Reproduction in sheep. Australian Academy of Science, Canberra, pp 286–288

    Google Scholar 

  • Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300:611–615

    Article  CAS  PubMed  Google Scholar 

  • Pinkert CA, Murray JD (1999) Transgenic farm animals. In: Murray JD, Anderson GB, Oberbauer AM, McGloughlin MM (eds) Transgenic animals in agriculture. CAB International, Wallingham, pp 1–18

    Google Scholar 

  • Pursel VG, Rexroad CE Jr (1993) Status of research with transgenic farm animals. J Anim Sci 71(Suppl):10–19

    PubMed  Google Scholar 

  • Pursel VG, Pinkert CA, Miller KF, Bolt DJ, Campbell RG, Palmiter RD, Brinster RD, Hammer RE (1989) Genetic engineering of livestock. Science 244:1281–1288

    Article  CAS  PubMed  Google Scholar 

  • Rocheleau CE, Downs WD, Lin R, Wittmann C, Bei Y, Cha Y-H, Ali M, Priess JR, Mello CC (1997) Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90:707–716

    Article  CAS  PubMed  Google Scholar 

  • Sartori C, DiDomenico AI, Thomson AJ, Milne E, Lillico SG, Burdon TG, Whitelaw CB (2011) Ovine-induced pluripotent stem cells can contribute to chimeric lambs. Cell Reprog 14:8–19

    Google Scholar 

  • Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KHS (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278:2130–2133

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Berg JM (1995) A direct comparison of the properties of natural and designed zinc-finger proteins. Chem Biol 2:83–89

    Article  CAS  PubMed  Google Scholar 

  • Sokol DL, Murray JD (1996) Antisense and ribozyme constructs in transgenic animals. Transgenic Res 5:363–371

    Article  CAS  PubMed  Google Scholar 

  • Sumer H, Liu J, Malaver-Ortega LF, Lim ML, Khodadadi K, Verma PJ (2011) NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci 89:2708–2716

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Tan W, Carlson DF, Walton MW, Fahrenkrug SC, Hackett PB (2012) Precision editing of large animal genomes. Adv Genet 80:37–97

    Article  CAS  PubMed  Google Scholar 

  • Tan W, Carlson DF, Lancto CA, Garbe JR, Webster DA, Hackett PB, Fahrenkrug SC (2013) Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci U S A 110:16526–16531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall RJ, Pursel VG, Hammer RE, Brinster RL (1985) Development of porcine ova that were centrifuged to permit visualization of pronuclei and nuclei. Biol Reprod 32:645–651

    Article  CAS  PubMed  Google Scholar 

  • Wall RJ, Hawk HW, Nel N (1992) Making transgenic livestock: genetic engineering on a large scale. J Cell Biochem 49:113–120

    Article  CAS  PubMed  Google Scholar 

  • Wall RJ, Kerr DE, Bondioli KR (1997) Transgenic dairy cattle: genetic engineering on a large scale. J Dairy Sci 80:2213–2224

    Article  CAS  PubMed  Google Scholar 

  • Walton JR, Murray JD, Marshall JT, Nancarrow CD (1987) Zygote viability in gene transfer experiments. Biol Reprod 37:957–967

    Article  CAS  PubMed  Google Scholar 

  • Ward KA, Franklin IR, Murray JD, Nancarrow CD, Raphael KA, Rigby NW, Byrne CR, Wilson BW, Hunt CL (1986) The direct transfer of DNA by embryo microinjection. In: Proceedings of 3rd world congress genetics applied to livestock breeding, vol 12. Lincoln, pp. 6–21

  • Ward KA, Nancarrow CD, Murray JD, Shanahan CM, Byrne CR, Rigby NW, Townrow CA, Leish Z, Wilson BW, Graham NM, Wynn PC, Hunt CL, Speck PA (1990) The current status of genetic engineering in domestic animals. J Dairy Sci 73:2586–2592

    Article  CAS  Google Scholar 

  • West FD, Uhl EW, Liu Y, Stowe H, Lu Y, Yu P, Gallegos-Cardenas A, Pratt SL, Stice SL (2011) Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells 29:1640–1643

    Article  CAS  PubMed  Google Scholar 

  • Whyte JJ, Zhao J, Wells KD, Samuel MS, Whitworth KM, Walters EM, Laughlin MH, Prather RS (2011) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Devel 78:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  CAS  PubMed  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Wang Y, Zhang Y, Yang M, Lv J, Liu J, Zhang Y (2015) TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc Natl Acad Sci USA 112:E1530–E1539. doi:10.1073/pnas.1421587112 Epub 2015 Mar 2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Murray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, J.D., Maga, E.A. Genetically engineered livestock for agriculture: a generation after the first transgenic animal research conference. Transgenic Res 25, 321–327 (2016). https://doi.org/10.1007/s11248-016-9927-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-016-9927-7

Keywords

Navigation