Skip to main content
Log in

Overexpression of spermidine/spermine N 1-acetyltransferase impairs osteoblastogenesis and alters mouse bone phenotype

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Spermidine/spermine N 1-acetyltransferase (SSAT) is a catabolic regulator of polyamines, ubiquitous molecules essential for cell proliferation and differentiation. In pathological conditions, the increased polyamine catabolism has been shown to mediate its cellular functions not only by changed polyamine levels but also by the availability of metabolites shared with other metabolic pathways or by production of toxic compounds. Our previous results showed that mice overexpressing SSAT (SSAT mice) developed a myeloproliferative disease and the bone marrow microenvironment partly contributed to its development. In this study, the physiological role of SSAT and polyamines in bone remodeling was characterized. Skeletal development of the SSAT mice appeared outwardly similar to wild-type mice until maturity, after which the SSAT mice developed kyphosis. With aging, the SSAT overexpression elicited increased bone perimeter with strikingly thinned cortical bone, decreased trabecular thickness and increased trabecular number in mice. In vitro studies showed that the maturation of SSAT overexpressing osteoblasts was impaired and the expression of bone formation marker genes was dramatically decreased. The polyamine pattern in osteoblasts of SSAT mice was distorted in comparison with wild-type mice. However, treatment of osteoblasts with a SSAT-inducing functional polyamine analogue suggested that defective osteoblastogenesis resulted rather from other consequences of enhanced SSAT activity than lowered levels of the higher polyamines. In comparison to SSAT overexpressing mice, SSAT deficiency led to opposite changes in osteoblastogenesis and differences in bone phenotype in mice. In conclusion, the level of SSAT enzyme activity affected osteoblastogenesis and hence influenced bone remodeling and the bone phenotype in mice. Furthermore, our results suggest the contribution of the catabolic part of the polyamine cycle, other than polyamine depletion, in pathophysiological processes of bone remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

αMetSPD:

α-Methylspermidine

ALP:

Alkaline phosphatase

APAO:

Acetylpolyamine oxidase

BMD:

Bone mineral density

B.Pm:

Bone perimeter

BSP:

Bone sialoprotein

BV:

Bone volume

Cs.Th:

Cortical thickness

Ct.Ar:

Cortical area

CTSK:

Cathepsin K

CTX:

Carboxy-terminal cross-linking telopeptide

MSC:

Mesenchymal stromal cell

NFATC1:

Nuclear factor of activated T-cells cytoplasmic 1

OC:

Osteocalcin

ODC:

Ornithine decarboxylase

OPN:

Osteopontin

OSX:

Osterix

PINP:

Procollagen type I propeptide

Po.V:

Total volume of porosity

ROS:

Reactive oxygen species

RUNX2:

Runt-related transcription factor 2

SMI:

Structural model index

SSAT:

Spermidine/spermine N 1-acetyltransferase

SSATKO:

Spermidine/spermine N 1-acetyltransferase knockout

Tb.Th:

Trabecular thickness

Tb.N:

Trabecular number

Tb.Sp:

Trabecular separation

TRAcP:

Tartrate-resistant acid phosphatase

Tt.Ar:

Total periosteal area

TV:

Tissue volume

References

  • Adolfsson J, Borge OJ, Bryder D et al (2001) Upregulation of Flt3 expression within the bone marrow lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15(4):659–669

    Article  CAS  PubMed  Google Scholar 

  • Adolfsson J, Mansson R, Buza-Vidas N et al (2005) Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121(2):295–306

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Young BA, Coleman CS, Pegg AE, Sheppard D (2004) Spermidine/spermine N1-acetyltransferase specifically binds to the integrin alpha9 subunit cytoplasmic domain and enhances cell migration. J Cell Biol 167(1):161–170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choo MK, Yeo H, Zayzafoon M (2009) NFATc1 mediates HDAC-dependent transcriptional repression of osteocalcin expression during osteoblast differentiation. Bone 45(3):579–589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Suppl 3):S131–S139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • deHart GW, Jin T, McCloskey DE, Pegg AE, Sheppard D (2008) The alpha9beta1 integrin enhances cell migration by polyamine-mediated modulation of an inward-rectifier potassium channel. Proc Natl Acad Sci USA 105(20):7188–7193

  • DeKoter RP, Singh H (2000) Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288(5470):1439–1441

    Article  CAS  PubMed  Google Scholar 

  • Edwards CM, Zhuang J, Mundy GR (2008) The pathogenesis of the bone disease of multiple myeloma. Bone 42(6):1007–1013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eisenberg T, Knauer H, Schauer A et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11):1305–1314

    Article  CAS  PubMed  Google Scholar 

  • Eliades A, Matsuura S, Ravid K (2012) Oxidases and reactive oxygen species during hematopoiesis: a focus on megakaryocytes. J Cell Physiol 227(10):3355–3362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eriksen EF (2010) Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord 11(4):219–227

    Article  PubMed Central  PubMed  Google Scholar 

  • Fogg DK, Sibon C, Miled C et al (2006) A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311(5757):83–87

    Article  CAS  PubMed  Google Scholar 

  • Fredericq E, Hacha R, Colson P, Houssier C (1991) Condensation and precipitation of chromatin by multivalent cations. J Biomol Struct Dyn 8(4):847–865

    Article  CAS  PubMed  Google Scholar 

  • Garnero P (2008) Biomarkers for osteoporosis management: utility in diagnosis, fracture risk prediction and therapy monitoring. Mol Diagn Ther 12(3):157–170

    Article  CAS  PubMed  Google Scholar 

  • Graf T, Enver T (2009) Forcing cells to change lineages. Nature 462(7273):587–594

    Article  CAS  PubMed  Google Scholar 

  • Grassinger J, Haylock DN, Storan MJ et al (2009) Thrombin-cleaved osteopontin regulates hemopoietic stem and progenitor cell functions through interactions with alpha9beta1 and alpha4beta1 integrins. Blood 114(1):49–59

    Article  CAS  PubMed  Google Scholar 

  • Janne J, Alhonen L, Pietila M et al (2006) Genetic manipulation of polyamine catabolism in rodents. J Biochem 139(2):155–160

    Article  CAS  PubMed  Google Scholar 

  • Lai AY, Kondo M (2006) Asymmetrical lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. J Exp Med 203(8):1867–1873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laiosa CV, Stadtfeld M, Graf T (2006) Determinants of lymphoid-myeloid lineage diversification. Annu Rev Immunol 24:705–738

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Park JH, Folk JE et al (2011) Inactivation of eukaryotic initiation factor 5A (eIF5A) by specific acetylation of its hypusine residue by spermidine/spermine acetyltransferase 1 (SSAT1). Biochem J 433(1):205–213

    Article  CAS  PubMed  Google Scholar 

  • Leeming DJ, Alexandersen P, Karsdal MA, Qvist P, Schaller S, Tanko LB (2006) An update on biomarkers of bone turnover and their utility in biomedical research and clinical practice. Eur J Clin Pharmacol 62(10):781–792

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Toyosawa S, Furuichi T et al (2001) Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J Cell Biol 155(1):157–166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Long F (2011) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13(1):27–38

    Article  PubMed  Google Scholar 

  • Maatta JA, Buki KG, Gu G et al (2013) Inactivation of estrogen receptor alpha in bone-forming cells induces bone loss in female mice. FASEB J 27(2):478–488

    Article  CAS  PubMed  Google Scholar 

  • Pirinen E, Kuulasmaa T, Pietila M et al (2007) Enhanced polyamine catabolism alters homeostatic control of white adipose tissue mass, energy expenditure, and glucose metabolism. Mol Cell Biol 27(13):4953–4967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pirnes-Karhu S, Mantymaa P, Sironen R et al (2013) Enhanced polyamine catabolism disturbs hematopoietic lineage commitment and leads to a myeloproliferative disease in mice overexpressing spermidine/spermine N-acetyltransferase. Amino Acids 46(3):689–700

  • Pirnes-Karhu S, Mantymaa P, Sironen R et al (2014) Enhanced polyamine catabolism disturbs hematopoietic lineage commitment and leads to a myeloproliferative disease in mice overexpressing spermidine/spermine N(1)-acetyltransferase. Amino Acids 46(3):689–700

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  • Tabor H (1962) The protective effect of spermine and other polyamines against heat denaturation of deoxyribonucleic acid. Biochemistry 1:496–501

    Article  CAS  PubMed  Google Scholar 

  • Teven CM, Liu X, Hu N et al (2011) Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int 2011:201371

    Article  PubMed Central  PubMed  Google Scholar 

  • Tripathi AK, Chaturvedi R, Ahmad R et al (2002) Peripheral blood leucocytes ornithine decarboxylase activity in chronic myeloid leukemia patients: prognostic and therapeutic implications. Leuk Res 26(4):349–354

    Article  CAS  PubMed  Google Scholar 

  • Veeravalli KK, Ponnala S, Chetty C, Tsung AJ, Gujrati M, Rao JS (2012) Integrin alpha9beta1-mediated cell migration in glioblastoma via SSAT and Kir4.2 potassium channel pathway. Cell Signal 24(1):272–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Venezia TA, Merchant AA, Ramos CA et al (2004) Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol 2(10):e301

    Article  PubMed Central  PubMed  Google Scholar 

  • Vicente C, Conchillo A, Garcia-Sanchez MA, Odero MD (2012) The role of the GATA2 transcription factor in normal and malignant hematopoiesis. Crit Rev Oncol Hematol 82(1):1–17

    Article  PubMed  Google Scholar 

  • Vincent A, Crozatier M (2010) Neither too much nor too little: reactive oxygen species levels regulate drosophila hematopoiesis. J Mol Cell Biol 2(2):74–75

    Article  CAS  PubMed  Google Scholar 

  • Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL (2004) Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103(9):3258–3264

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Niu C, Ye L et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Ou G, Hamrick M et al (2008) Age-related changes in the osteogenic differentiation potential of mouse bone marrow stromal cells. J Bone Miner Res 23(7):1118–1128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao Q, Wang X, Liu Y, He A, Jia R (2010) NFATc1: functions in osteoclasts. Int J Biochem Cell Biol 42(5):576–579

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Ashok M, Li J et al (2009) Spermine protects mice against lethal sepsis partly by attenuating surrogate inflammatory markers. Mol Med 15(7–8):275–282

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Ms Tuula Reponen, Ms Anne Karppinen, Ms Arja Korhonen and Ms Marita Heikkinen for their skilful technical assistance. We thank Professor Alex Khomutov for providing alpha-methylated spermidine analogue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sini Pirnes-Karhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirnes-Karhu, S., Määttä, J., Finnilä, M. et al. Overexpression of spermidine/spermine N 1-acetyltransferase impairs osteoblastogenesis and alters mouse bone phenotype. Transgenic Res 24, 253–265 (2015). https://doi.org/10.1007/s11248-014-9836-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-014-9836-6

Keywords

Navigation