Skip to main content

Advertisement

Log in

Pig transgenesis by piggyBac transposition in combination with somatic cell nuclear transfer

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The production of animals by somatic cell nuclear transfer (SCNT) is inefficient, with approximately 2 % of micromanipulated oocytes going to term and resulting in live births. However, it is the most commonly used method for the generation of cloned transgenic livestock as it facilitates the attainment of transgenic animals once the nuclear donor cells are stably transfected and more importantly as alternatives methods of transgenesis in farm animals have proven even less efficient. Here we describe piggyBac-mediated transposition of a transgene into porcine primary cells and use of these genetically modified cells as nuclear donors for the generation of transgenic pigs by SCNT. Gene transfer by piggyBac transposition serves to provide an alternative approach for the transfection of nuclear donor cells used in SCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Mashhadi RH, Sorensen CB, Kragh PM, Christoffersen C, Mortensen MB, Tolbod LP, Thim T, Du Y, Li J, Liu Y, Moldt B, Schmidt M, Vajta G, Larsen T, Purup S, Bolund L, Nielsen LB, Callesen H, Falk E, Mikkelsen JG, Bentzon JF (2013) Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med 5(166):166ra161. doi:10.1126/scitranslmed.3004853

    Article  Google Scholar 

  • Betthauser J, Forsberg E, Augenstein M, Childs L, Eilertsen K, Enos J, Forsythe T, Golueke P, Jurgella G, Koppang R, Lesmeister T, Mallon K, Mell G, Misica P, Pace M, Pfister-Genskow M, Strelchenko N, Voelker G, Watt S, Thompson S, Bishop M (2000) Production of cloned pigs from in vitro systems. Nat Biotechnol 18(10):1055–1059. doi:10.1038/80242

    Article  CAS  PubMed  Google Scholar 

  • Cadinanos J, Bradley A (2007) Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res 35(12):e87. doi:10.1093/nar/gkm446

    Article  PubMed  Google Scholar 

  • Cao Z, Sui L, Li Y, Ji S, Zhang X, Zhang Y (2012) Effects of chemically defined medium on early development of porcine embryos derived from parthenogenetic activation and cloning. Zygote 20(3):229–236. doi:10.1017/S0967199411000153

    Article  PubMed  Google Scholar 

  • Carlson DF, Garbe JR, Tan W, Martin MJ, Dobrinsky JR, Hackett PB, Clark KJ, Fahrenkrug SC (2011) Strategies for selection marker-free swine transgenesis using the Sleeping Beauty transposon system. Transgenic Res 20(5):1125–1137. doi:10.1007/s11248-010-9481-7

    Article  CAS  PubMed  Google Scholar 

  • Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E, Fraser MJ (1989) Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172(1):156–169

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Yang D, Zhao B, Ouyang Z, Song J, Fan N, Liu Z, Zhao Y, Wu Q, Nashun B, Tang J, Wu Z, Gu W, Lai L (2011) Use of the 2A peptide for generation of multi-transgenic pigs through a single round of nuclear transfer. PLoS One 6(5):e19986. doi:10.1371/journal.pone.0019986

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Vazquez FA, Ruiz S, Matas C, Izquierdo-Rico MJ, Grullon LA, De Ondiz A, Vieira L, Aviles-Lopez K, Gutierrez-Adan A, Gadea J (2010) Production of transgenic piglets using ICSI-sperm-mediated gene transfer in combination with recombinase RecA. Reproduction 140(2):259–272. doi:10.1530/REP-10-0129

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Vazquez FA, Ruiz S, Grullon LA, de Ondiz A, Gutierrez-Adan A, Gadea J (2011) Factors affecting porcine sperm mediated gene transfer. Res Vet Sci 91(3):446–453. doi:10.1016/j.rvsc.2010.09.015

    Article  CAS  PubMed  Google Scholar 

  • Gordon JW, Scangos GA, Plotkin DJ, Barbarosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77:7380–7384

    Article  CAS  PubMed  Google Scholar 

  • Grandjean M, Girod PA, Calabrese D, Kostyrko K, Wicht M, Yerly F, Mazza C, Beckmann JS, Martinet D, Mermod N (2011) High-level transgene expression by homologous recombination-mediated gene transfer. Nucleic Acids Res 39(15):e104. doi:10.1093/nar/gkr436

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen JE, Li J, Kragh PM, Moldt B, Lin L, Liu Y, Schmidt M, Winther KD, Schyth BD, Holm IE, Vajta G, Bolund L, Callesen H, Jorgensen AL, Nielsen AL, Mikkelsen JG (2011) Pig transgenesis by Sleeping Beauty DNA transposition. Transgenic Res 20(3):533–545. doi:10.1007/s11248-010-9438-x

    Article  CAS  PubMed  Google Scholar 

  • Lavitrano M, Camaioni A, Fazio VM, Dolci S, Farace MG, Spadafora C (1989) Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell 57(5):717–723

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Shi J, Liu D, Zhou R, Zeng H, Zhou X, Mai R, Zeng S, Luo L, Yu W, Zhang S, Wu Z (2013) Effects of donor fibroblast cell type and transferred cloned embryo number on the efficiency of pig cloning. Cell Reprogr 15(1):35–42. doi:10.1089/cell.2012.0042

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295(5556):868–872

    Article  CAS  PubMed  Google Scholar 

  • Marh J, Stoytcheva Z, Urschitz J, Sugawara A, Yamashiro H, Owens JB, Stoytchev I, Pelczar P, Yanagimachi R, Moisyadi S (2012) Hyperactive self-inactivating piggyBac for transposase-enhanced pronuclear microinjection transgenesis. Proc Natl Acad Sci USA 109(47):19184–19189. doi:10.1073/pnas.1216473109

    Article  CAS  PubMed  Google Scholar 

  • Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, Awata T, Hanada H, Perry AC (2000) Pig cloning by microinjection of fetal fibroblast nuclei. Science 289(5482):1188–1190

    Article  CAS  PubMed  Google Scholar 

  • Park KW, Cheong HT, Lai L, Im GS, Kuhholzer B, Bonk A, Samuel M, Rieke A, Day BN, Murphy CN, Carter DB, Prather RS (2001) Production of nuclear transfer-derived swine that express the enhanced green fluorescent protein. Anim Biotechnol 12(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Perry AC, Wakayama T, Kishikawa H, Kasai T, Okabe M, Toyoda Y, Yanagimachi R (1999) Mammalian transgenesis by intracytoplasmic sperm injection. Science 284(5417):1180–1183

    Article  CAS  PubMed  Google Scholar 

  • Rinaudo P, Schultz RM (2004) Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction 128(3):301–311. doi:10.1530/rep.1.00297

    Article  CAS  PubMed  Google Scholar 

  • Staunstrup NH, Madsen J, Primo MN, Li J, Liu Y, Kragh PM, Li R, Schmidt M, Purup S, Dagnaes-Hansen F, Svensson L, Petersen TK, Callesen H, Bolund L, Mikkelsen JG (2012) Development of transgenic cloned pig models of skin inflammation by DNA transposon-directed ectopic expression of human beta1 and alpha2 integrin. PLoS One 7(5):e36658. doi:10.1371/journal.pone.0036658

    Article  CAS  PubMed  Google Scholar 

  • Urschitz J, Kawasumi M, Owens J, Morozumi K, Yamashiro H, Stoytchev I, Marh J, Dee JA, Kawamoto K, Coates CJ, Kaminski JM, Pelczar P, Yanagimachi R, Moisyadi S (2010) Helper-independent piggyBac plasmids for gene delivery approaches: strategies for avoiding potential genotoxic effects. Proc Natl Acad Sci USA 107(18):8117–8122. doi:10.1073/pnas.1003674107

    Article  CAS  PubMed  Google Scholar 

  • Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394(6691):369–374

    Article  CAS  PubMed  Google Scholar 

  • Wall RJ (2001) Pronuclear microinjection. Cloning Stem Cells 3(4):209–220

    Article  CAS  PubMed  Google Scholar 

  • Wall RJ, Pursel VG, Hammer RE, Brinster RL (1985) Development of porcine ova that were centrifuged to permit visualization of pronuclei and nuclei. Biol Reprod 32(3):645–651

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Lin C, Lu D, Ning Z, Cox T, Melvin D, Wang X, Bradley A, Liu P (2008) Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci USA 105(27):9290–9295. doi:10.1073/pnas.0801017105

    Article  CAS  PubMed  Google Scholar 

  • Whyte JJ, Prather RS (2011) Genetic modifications of pigs for medicine and agriculture. Mol Reprod Dev 78(10–11):879–891. doi:10.1002/mrd.21333

    Article  CAS  PubMed  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–813. doi:10.1038/385810a0

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Luo S, Wang Y, Zhuang L, Chen Y, Peng C (2001) Smads in human trophoblast cells: expression, regulation and role in TGF-beta-induced transcriptional activity. Mol Cell Endocrinol 175(1–2):111–121

    Article  CAS  PubMed  Google Scholar 

  • Wu SC, Meir YJ, Coates CJ, Handler AM, Pelczar P, Moisyadi S, Kaminski JM (2006) piggyBac is a flexible and highly active transposon as compared to Sleeping Beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci USA 103(41):15008–15013

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Liu CJ, Wan PC, Hao ZD, Zeng SM (2009) Factors affecting the efficiency of producing porcine embryos expressing enhanced green fluorescence protein by ICSI-mediated gene transfer method. Anim Reprod Sci 113(1–4):156–166. doi:10.1016/j.anireprosci.2008.08.014

    Article  CAS  PubMed  Google Scholar 

  • Yusa K, Zhou L, Li MA, Bradley A, Craig NL (2011) A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci USA 108(4):1531–1536. doi:10.1073/pnas.1008322108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Science Foundation for Young Scholars of China (Grant Number: 31101689), a grant from the National High Technology Research and Development Program of China (863 Program, Grant Number: 2011AA100304), a grant from Department of Science and Technology of Guangdong, China (Grant Number: 2011A020901001) and by National Institutes of Health Grants 5P20RR024206 and R01 GM083158-01A1 (to S.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Moisyadi or Zicong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z., Xu, Z., Zou, X. et al. Pig transgenesis by piggyBac transposition in combination with somatic cell nuclear transfer. Transgenic Res 22, 1107–1118 (2013). https://doi.org/10.1007/s11248-013-9729-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-013-9729-0

Keywords

Navigation