Skip to main content
Log in

Understanding plant defence responses against herbivore attacks: an essential first step towards the development of sustainable resistance against pests

  • Review
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Plant-herbivore relationships are complex interactions encompassing elaborate networks of molecules, signals and strategies used to overcome defences developed by each other. Herbivores use multiple feeding strategies to obtain nutrients from host plants. In turn, plants respond by triggering defence mechanisms to inhibit, block or modify the metabolism of the pest. As part of these defences, herbivore-challenged plants emit volatiles to attract natural enemies and warn neighbouring plants of the imminent threat. In response, herbivores develop a variety of strategies to suppress plant-induced protection. Our understanding of the plant-herbivore interphase is limited, although recent molecular approaches have revealed the participation of a battery of genes, proteins and volatile metabolites in attack-defence processes. This review describes the intricate and dynamic defence systems governing plant-herbivore interactions by examining the diverse strategies plants employ to deny phytophagous arthropods the ability to breach newly developed mechanisms of plant resistance. A cornerstone of this understanding is the use of transgenic tools to unravel the complex networks that control these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alba JM, Bleeke PM, Glas JJ, Schimme BCJ, Wijk M, Sabelis MW, Schuurink RC, Kant MR (2012) The impact of induced plant volatiles on plant-arthropod interactions. In: Smagghe G, Diaz I (eds) Arthropod-plant interactions- novel insights and approaches for IPM. Springer, Dordrecht, pp 15–73

    Chapter  Google Scholar 

  • Alborn T, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretions. Science 276:945–949

    Article  CAS  Google Scholar 

  • Alborn HT, Hansen TV, Jones TH, Bennet DC, Tumlinson JH, Schmelz EA, Teal PEA (2007) Disulfooxy fatty acids from the American birdgrasshopper Schistocerca americana, elicitors of plant volatiles. Proc Natl Acad Sci USA 104:12976–12981

    Article  PubMed  CAS  Google Scholar 

  • Balbyshev NF, Lorenzen JH (1997) Hypersensitivity and egg drop: a novel mechanism of host plant resistance to Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 90:652–657

    Google Scholar 

  • Ballare CL (2010) Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Plant Sci 16:249–257

    Article  Google Scholar 

  • Bonaventure G (2012) Perception of insect feeding by plants. Plant Biol 14:872–880

    Article  PubMed  CAS  Google Scholar 

  • Bonaventure G, Van Doorn A, Baldwin IT (2011) Herbivore-associated elicitors: FAC signaling and metabolism. Trends Plant Sci 16:294–299

    Article  PubMed  CAS  Google Scholar 

  • Bos JI, Prince D, Pitino M, Maffei ME, Win J, Hogenhout SA (2010) A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genet 6:3100216

    Article  Google Scholar 

  • Bruessow F, Gouhier-Darimont C, Buchala A, Metraux JP, Reymond P (2010) Insect eggs suppress plant defence against chewing herbivores. Plant J 62:876–885

    Article  PubMed  CAS  Google Scholar 

  • Buanafina MMO, Fescemyer HW (2012) Modification of esterifed cell wall phenolics increases vulnerability of tall fescue to herbivory by the fall armyworm. Planta 236:513–523

    Article  CAS  Google Scholar 

  • Carmona D, Fornoni J (2013) Herbivores can select for mixed defensive strategies in plants. New Phytol 197:576–585

    Article  PubMed  Google Scholar 

  • Carolan JC, Caragea D, Reardon KT, Mutti NS, Dittmer N, Pappan K, Cui F, Castaneto M, Poulain J, Dossat C, Tagu D, Reese JC, Reeck GR, Wilkinson TL, Edwards OR (2011) Predicted effector molecules in the salivary secretome of the pea aphid Acyrthosiphon pisum: a dual transcriptomic/proteomic approach. J Proteome Res 10:1505–1508

    Article  PubMed  CAS  Google Scholar 

  • Casteel CL, Walling LL, Paine TD (2006) Behaviour and biology of the tomato psyllid, Bactericerca cockerelli, in response to the Mi-1.2 gene. Entomol Exp Appl 121:67–72

    Article  CAS  Google Scholar 

  • Chandler SF, Sanchez C (2012) Genetic modification; the development of transgenic ornamental plant varieties. Plant Biotechnol J 10:891–903

    Article  PubMed  Google Scholar 

  • Chini A, Fonsec S, Chico JM, Fernández-Calvo P, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    Article  PubMed  CAS  Google Scholar 

  • Choi YE, Lim S, Kim HJ, Han JY, Lee MH, Yang Y, Kim JA, Kim YS (2012) Tobacco NtLTP1, a glandular-specific lipid transfer protein, is required for lipid secretion from glandular trichomes. Plant J 70:480–491

    Article  PubMed  CAS  Google Scholar 

  • Christou P (2013) Plant genetic engineering and agricultural biotechnology 1983–2013. Trends Biotechnol 31:125–127

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt D, Refi-Hind S, Strarmann JW, Lincoln DE (2010) Systemin and jasmonic acid regulate constitutive and herbivore-induced systemic volatile emission in tomato, Solanum lycopersicum. Phytochemistry 71:2024–2037

    Article  PubMed  CAS  Google Scholar 

  • Divol F, Vilaine F, Thibivilliers S, Kusiak C, Sauge MH, Dinant S (2007) Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. Plant, Cell Environ 30:187–201

    Article  CAS  Google Scholar 

  • Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19:2225–2245

    Article  PubMed  CAS  Google Scholar 

  • Doss RP, Oliver JE, Proebsting WM, Potter SW, Kuy S, Clement SL, Williamson RT, Carney JR, DeVilbiss ED (2000) Bruchins: insect-derived plant regulators that stimulate neoplasm formation. Proc Natl Acad Sci USA 97:6218–6223

    Article  PubMed  CAS  Google Scholar 

  • Du B, Zhang W, Liu B, Hu J, Wei Z, Shi Z, He R, Zhu L, Chen R, Han B, He G (2009) Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci USA 106:22163–22168

    Article  PubMed  CAS  Google Scholar 

  • Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17:250–259

    Article  PubMed  CAS  Google Scholar 

  • Fatouros NE, Broekgaarden C, Bukovinszkine′Kiss G, van Loon JJ, Mumm R, Huigens ME, Dicke M, Hilker M (2008) Male-derived butterfly antiaphrodisiac mediates induced indirect plant defense. Proc Natl Acad Sci USA 105:10033–10038

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico JM, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715

    Article  PubMed  Google Scholar 

  • Fridborg I, Johansson A, Lagensjö J, Leelarasamee N, Floková K, Tarkowská D, Meijer J, Bejai S (2013) ML3: a novel regulator of herbivory-induced responses in Arabidopsis thaliana. J Exp Bot 64:935–948

    Article  PubMed  CAS  Google Scholar 

  • Gambino G, Gribaudo I (2012) Genetic transformation of fruit trees: current status and remaining challenges. Transgenic Res 21:1163–1181

    Article  PubMed  CAS  Google Scholar 

  • Gilardoni PA, Hettenhausen C, Baldwin IT, Bonaventure G (2011) Nicotiana attenuata LECTIN RECEPTOR KINASE1 suppresses the insect-mediated inhibition of induced defense responses during Manduca sexta herbivory. Plant Cell 23:3512–3532

    Article  PubMed  CAS  Google Scholar 

  • Giri AP, Wunsche H, Mitra S, Zavala JA, Muck A, Svatos A, Baldwin IT (2006) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, phingidae) and its natural host Nicotiana attenuata. VII. Changes in the plant’s proteome. Plant Physiol 142:1621–1641

    Article  PubMed  CAS  Google Scholar 

  • Glas JJ, Schimmel BC, Alba JM, Esobar-Bravo R, Chuurink RXC, Kant MR (2012) Plant glandular trichomes as targets for breeding of resistance to herbivores. Int J Mol Sci 13:17077–17103

    Article  PubMed  CAS  Google Scholar 

  • Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007) Plant structural traits and their role in anti-herbivore defence. Persp Plant Ecol Evol Syst 8:157–178

    Article  Google Scholar 

  • Helle W, Sabelis MW (1985) World crop pests, spider mites: their biology, natural enemies, and control. Elsevier Science Publishers, New York

    Google Scholar 

  • Hirayama C, Konno K, Wasano N, Nakamura M (2007) Differential effects of sugar-mimic alkaloids in mulberry latex on sugar metabolism and disaccharidases of Eri and domesticated silkworms: enzymatic adaptation of Bombyx mori to ulberry defense. Insect Biochem Mol Biol 37:1348–1358

    Article  PubMed  CAS  Google Scholar 

  • Hogenhout SA, Bos JI (2011) Effector proteins that modulate plant-insect interactions. Current Opin Plant Biol 14:422–428

    Article  CAS  Google Scholar 

  • Holme IB, Wendt T, Holm PB (2013) Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol J. doi:10.1111/pbi.12055

    PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Ann Rev Plant Biol 59:41–66

    Article  CAS  Google Scholar 

  • Huffaker A, Pearce G, Veyrat N, Erb M, Turlings TEC, Sartor R, Shene Z, Briggs SP, Vaughan MM, Alborm HT, Teal PEA, Schmelz EA (2013) Plant elicitor peptides are conserved signals regulating direct and indirect anti-herbivore defense. Proc Natl Acad Sci USA 14:5707–5712

    Article  Google Scholar 

  • Ibanez S, Gallet C, Despres L (2012) Plant insecticidal toxins in ecological networks. Toxins 4:228–243

    Article  PubMed  CAS  Google Scholar 

  • Jassabi AR, Gase K, Hettenhausen C, Schmidt A, Baldwin IT (2008) Silencing geranylgeranyl diphosphate symthase in Nicotiana attenuata dramatically impairs resistance to tobacco hornworm. Plant Physiol 146:974–986

    Article  Google Scholar 

  • Kanchiswamy CN, Takahashi H, Quadro S, Maffei M, Bossi S, Bertea C, Zebelo SA, Muroi A, Ishihama N, Yoshioka H, Boland W, Takabayashi J, Endo Y, Sawasaki T, Arimura G (2010) Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling. BMC Plant Biol 10:97

    Article  PubMed  Google Scholar 

  • Kandoth PK, Ranf S, Pancholi SS, Jayanty S, Walla MD, Miller W, Howe GA, Lincoln DE, Stratmann JW (2007) Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3 function in the systemin-mediated defense response against herbivorous insects. Proc Natl Acad Sci USA 104:12205–12210

    Article  PubMed  CAS  Google Scholar 

  • Kerchev PL, Fenton B, Foyer CH, Hancock RD (2012) Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant, Cell Environ 35:441–453

    Article  CAS  Google Scholar 

  • Konno K (2011) Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry 72:1510–1530

    Article  PubMed  CAS  Google Scholar 

  • Korner E, von Dahl CC, Bonaventure G, Baldwin IT (2009) Pectin methylesterase NaPME1 contributes to the emission of methanol during insect herbivory and to the elicitation of defence responses in Nicotiana attenuata. J Exp Bot 60:2631–2640

    Article  PubMed  Google Scholar 

  • Lawrence SD, Novak NG, Ju CJ, Cooke JE (2008) Potato, Solanum tuberosum, defense against Colorado potato beetle, Leptinotarsa decemlineata (Say): microarray gene expression profiling of potato by Colorado potato beetle regurgitant treatment of wounded leaves. J Chem Ecol 34:1013–1025

    Article  PubMed  CAS  Google Scholar 

  • Lawrence SD, Novak NG, Kayal WEl, Ju CHT, Cooke JEK (2012) Root herbivory: molecular analysis of the maize transcriptome upon infestation by Southern corn rootworm, Diabrotica undecimpunctata howardi. Physiol Plant 144:303–319

    Article  PubMed  CAS  Google Scholar 

  • Li C, Williams MM, Loh YT, Lee GI, Howe GA (2002) Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-signalling pathway. Plant Physiol 130:494–503

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Williams CE, Nemacheck JA, Wang H, Subramanyam S, Zheng C, Chen MS (2010) Reactive oxygen species are involved in plant defense against a gall midge. Plant Physiol 152:985–999

    Article  PubMed  CAS  Google Scholar 

  • MacGregor KB, Shelp BJ, Peiris S, Bown AW (2003) Overexpression of glutamate decarboxylase in transgenic tobacco plants deters feeding by phytophagous insect larvae. J Chem Ecol 29:2177–2182

    Article  PubMed  CAS  Google Scholar 

  • Maffei ME, Mithöfer A, Boland W (2007) Before gene expression: early events in plant-insect interaction. Trends Plant Sci 12:310–316

    Article  PubMed  CAS  Google Scholar 

  • Mahanil S, Attajarusit J, Stout MJ, Thipyapong P (2008) Overexpression of tomato polyphenol oxidase increases resistance to common cutworm. Plant Sci 174:456–466

    Article  CAS  Google Scholar 

  • Mantelin S, Peng HC, Li B, Atmian HS, Takken FLW, Kaloshian I (2011) The receptor-like SISERK1 is required for Mi-1-mediated resistance to potato aphids in tomato. Plant J 67:459–471

    Article  PubMed  CAS  Google Scholar 

  • Martinez M (2012) Co-evolution of genes for specification in arthropod-plant interaction: a bioinformatics analysis in plant and arthropod genomes. In: Smagghe G, Diaz I (eds) Arthropod-plant interactions- novel insights and approaches for IPM. Springer, Dordrecht, pp 15–73

    Google Scholar 

  • McGurl B, Pearce G, Orozco-Cardenas M, Ryan CA (1992) Structure, expression, and antisense inhibition of the system in precursor gene. Science 255:1570–1573

    Article  PubMed  CAS  Google Scholar 

  • McGurl B, Orozco-Cardenas M, Pearce G, Ryan CA (1994) Overexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase inhibitor synthesis. Proc Natl Acad Sci USA 91:9799–9802

    Article  PubMed  CAS  Google Scholar 

  • Meldau S, Wu JQ, Baldwin IT (2009) Silencing two herbivory-activated MAP kinases, SIPK and WIPK, does not increase Nicotiana attenuata′s susceptibility to herbivores in the glasshouse and in nature. New Phytol 181:161–173

    Article  PubMed  CAS  Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2:ra45

    Google Scholar 

  • Nabity PD, Zavala JA, DeLucia EH (2013) Herbivore induction of jasmonic acid and chemical defences reduce photosynthesis in Nicotina attenuate. J Exp Bot 64:685–694

    Article  PubMed  CAS  Google Scholar 

  • Narvaez-Vasquez J, Florin-Christensen J, Ryan CA (1999) Positional specificity of a phospholipase A activity induced by wounding, system in and oligosaccharide elicitors in tomato leaves. Plant Cell 11:2249–2260

    PubMed  CAS  Google Scholar 

  • Nombela G, Williamson VM, Muñiz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant Microbe Interact 16:645–649

    Article  PubMed  CAS  Google Scholar 

  • Ortego F (2012) Physiological adaptations of the insect gut to herbivory. In: Smagghe G, Diaz I (eds) Arthropod-plant interactions- novel insights and approaches for IPM. Springer, Dordrecht, pp 15–73

    Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Grunewalsd W, Perez AC, Chico JM, Bossche RV, Sewell J, Gil E, Garcia-Casado G, Witters E, Inze D, Long JA, Laeqer G, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signaling. Nature 464:788–791

    Article  PubMed  CAS  Google Scholar 

  • Peiffer M, Tooker JF, Luthe DS, Felton GW (2009) Plants on early alert: glandular trichomes as sensors for insect herbivores. New Phytol 184:644–656

    Article  PubMed  CAS  Google Scholar 

  • Pitino M, Hogenhout SA (2013) Aphid protein effectors promote aphid colonization in plant species-specific manner. Mol Plant-Microbe Inter 1:130–139

    Article  Google Scholar 

  • Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS ONE 6:e25709

    Article  PubMed  CAS  Google Scholar 

  • Plett JM, Wilkins O, Campbell MM, Ralph SG, Regan S (2010) Endogenous overexpression of Populus MYB186 increases trichome density, improves insect pest resistance, and impacts plant growth. Plant J 64:419–432

    Article  PubMed  CAS  Google Scholar 

  • Ralph SG, Yueh H, Friedmann M, Aeschliman D, Zeznik JA, Nelson CC, Butterfield YS, Kirkpatrick R, Liu J, Jones SJ, Marra MA, Douglas CJ, Ritland K, Bohlmann J (2006) Conifer defense against insect: microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobe) reveals large-scale changes of the host transcriptome. Plant, Cell Environ 29:1545–1570

    Article  Google Scholar 

  • Robert-Seilaniantz A, Garnt M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just JASMONATES-SALICYLATE antagonism. Ann Rev Phytopathol 49:317–343

    Article  CAS  Google Scholar 

  • Rodriguez PA, Bos JI (2013) Toward understanding the role of aphid effectors in plant infestation. Mol Plant Microbe Interact 26:25–30

    Article  PubMed  CAS  Google Scholar 

  • Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754

    Article  PubMed  CAS  Google Scholar 

  • Royo J, Leon J, Vancanneyt G, Albar JP, Rosahl S, Ortego F, Castanera P, Sanchez-Serrano JJ (1999) Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of proteinase inhibitors and increases weight gain of insect pests. Proc Natl Acad Sci USA 96:1146–1151

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA (2000) The systemin signaling pathway: differential activation of defensive genes. Biochim Biophys Acta 1477:112–122

    Article  PubMed  CAS  Google Scholar 

  • Santamaria ME, Cambra I, Martinez M, Pozancos C, González-Melendi P, Grbic V, Castañera P, Ortego F, Diaz I (2012) Gene pyramiding of peptidase inhibitors enhances plant resistance to the spider mite Tetranychus urticae. PLoS ONE 7:e43011

    Article  PubMed  CAS  Google Scholar 

  • Sasidharan R, Voesenek LACJ, Pierik R (2011) Cell wall modifying proteins mediate plant acclimatization to biotic and abiotic stresses. Crit Rev Plant Sci 30:548–562

    Article  CAS  Google Scholar 

  • Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PS, Alborn HT, Teal PEA (2006) Fragments of ATP synthase mediated plant perception of insect attack. Proc Natl Acad Sci USA 103:8894–8899

    Article  PubMed  CAS  Google Scholar 

  • Schmelz EA, LeClere S, Carroll MJ, Alborn HT, Teal PEA (2007) Cowpea chloroplasts ATP synthase is the source of multiple plant defense elicitors during insect herbivory. Plant Physiol 144:793–805

    Article  PubMed  CAS  Google Scholar 

  • Schweighofer A, Kazanaviciute V, Scheikl E, Teige M, Doczi R, Hirt H, Schwanninger M, Kant M, Mauch F, Buchala A, Cardinale F, Meskiene I (2007) The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPPK6, modulates innate immunity, jasmonic acids, and ethylene levels in Arabidopsis. Plant Cell 19:2213–2224

    Article  PubMed  CAS  Google Scholar 

  • Skibbe M, Qu N, Galis I, Baldwin IT (2008) Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell 20:1984–2000

    Article  PubMed  CAS  Google Scholar 

  • Soroka JJ, Holowachuk JM, Gruber MY, Grenkow LF (2011) Feeding by flea beetles (Coleoptera: Chrysomelidae; Phyllotreta spp.) is decreased on canola (Brassica napus) seedlings with increased trichome density. J Econ Entomol 104:125–136

    Article  PubMed  Google Scholar 

  • Steppuhn A, Gase K, Kroch B, Halitschke R, Baldwin IT (2004) Nicotine′s defensive function in nature. PLoS Biol 2:e382

    Article  Google Scholar 

  • Stotz HU, Pittendrigh BR, Kroymann J, Weniger K, Fritsche J, Bauke A, Mitchell-Olds T (2000) Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiol 124:1007–1017

    Article  PubMed  CAS  Google Scholar 

  • Sun JQ, Jiang HL, Li CY (2011) Systemin/jasmonate-mediated systemic defense signalling in tomato. Mol Plant 4:607–615

    Article  PubMed  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF (COI1) complex during jasmonate signalling. Nature 448:661–665

    Article  PubMed  CAS  Google Scholar 

  • Tian D, Tooker J, Peiffer M, Chung SH, Felton GW (2012) Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta 236:1053–1066

    Article  PubMed  CAS  Google Scholar 

  • Truitt CL, Wei HX, Pare PW (2004) A plasma membrane protein from Zea mays binds with the herbivore elicitor volicitin. Plant Cell 16:523–532

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L, Hogers R, Frijters A, Groenendijk J, Diergaarde P, Reijans M, Fierens-Onstenk J, de Both M, Peleman J, Liharska T, Hontelez J, Zabeau M (1998) The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat Biotechnol 16:1365–1369

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Constabel CP (2004) Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta 220:87–96

    Article  PubMed  CAS  Google Scholar 

  • Wang E, Wang R, Deparasis J, Loughrin JH, Gan SS, Wagner GJ (2001) Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat Biotechnol 19:371–374

    Article  PubMed  CAS  Google Scholar 

  • Wang E, Hall JT, Wagner GJ (2004) Transgenic Nicotiana tabacum L. with enhanced trichome exudates cembratrieneols has reduced aphid infestation in the field. Mol Breeding 13:49–57

    Article  Google Scholar 

  • War AR, Paulraj MG, Ahmad TA, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defence against insect herbivores. Plant Signal Behav 7:1–15

    Article  Google Scholar 

  • Wheat CW, Vogel H, Wittstock U, Braby MF, Underwood D, Mitchell-Olds T (2007) The genetic basis of a plant-insect coevolutionary key innovation. Proc Natl Acad Sci USA 104:20427–20431

    Article  PubMed  CAS  Google Scholar 

  • Wroblewski T, Piskurewicz U, Tomczak A, Ochoa O, Michelmore RW (2007) Silencing of the major family of NBS-LRR-encoding genes in lettuce results in the loss of multiple resistance specificities. Plant J 51:803–818

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Hettenhausen C, Meldau S, Baldwin IT (2007) Herbivory rapidly activates MAPK signalling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19:1096–10122

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Wang L, Wünsche H, Baldwin IT (2013) Narboh D, a respiratory burst oxidase homolog in Nicotiana attenuata, is required for late defense responses after herbivore attack. J Integ Plant Biol 55:187–198

    Article  CAS  Google Scholar 

  • Yamaguchi Y, Huffaker A (2011) Endogenous peptide elicitors in higher plants. Current Opin Plant Biol 14:351–357

    Article  CAS  Google Scholar 

  • Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan AC (2010) PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defenses in Arabidopsis. Plant Cell 22:508–522

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, Wang Z, Xie D (2009) The Arabidopsis coronatine insensitive1 protein is a jasmonate receptor. Plant Cell 21:2220–2236

    Article  PubMed  CAS  Google Scholar 

  • Yang DH, Hettenhausen C, Baldwin IT, Wu J (2012) Silencing Nicotiana attenuata calcium-dependent protein kinases, CDPK4 and CDPK5, strongly up-regulate wound- and herbivory-induced jasmonic acid accumulations. Plant Physiol 159:1591–1607

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga N, Aboshi T, Ishikawa C, Fukui M, Shimoda M, Nishida R, Lait CG, Tumlinson JH, Mori N (2007) Fatty acid amides, previously identified in caterpillars, found in the cricket Teleogryllus taiwanemma and the fruit fly Drosophila melanogaster larvae. J Chem Ecol 33:1376–1381

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Zhang Z, Kang L (2012) Transcriptome response analysis of Arabidopsis thaliana to leaf miner (Liriomyza huidobrensis). BMC Plant Biol 12:234

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Project funding by the Ministerio de Economía y Competitividad of Spain (AGL2011-23650), by the Government of Canada through Genome Canada and the Ontario Genomics Institute (OGI-046) and by Ontario Research Fund- Global Leadership in Genomics and Life Sciences (GL2-01-035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Diaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santamaria, M.E., Martínez, M., Cambra, I. et al. Understanding plant defence responses against herbivore attacks: an essential first step towards the development of sustainable resistance against pests. Transgenic Res 22, 697–708 (2013). https://doi.org/10.1007/s11248-013-9725-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-013-9725-4

Keywords

Navigation