Skip to main content

Advertisement

Log in

Construction of a transgenic pig model overexpressing polycystic kidney disease 2 (PKD2) gene

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is a common human genetic disease, affecting millions of people worldwide. The progressive growth of cysts in kidneys eventually leads to renal failure in 50 % of patients, and there is currently no effective treatment. Various murine models have been studied to elucidate the disease mechanisms, and much information has been acquired. However, the course of the disease cannot be fully recapitulated using these models. The pig is a suitable model for biomedical research, and pig PKD2 has high similarity to the human ortholog at the molecular level. Here, a mini-pig PKD2 transgenic model was generated, driven by a ubiquitous cytomegalovirus enhancer/promoter. Using somatic cell nuclear transfer, four transgenic pigs with approximately 10 insertion events each were generated. Quantitative real-time PCR and western blotting showed that PKD2 was more highly expressed in transgenic pigs than in wild-type counterparts. Because of the chronic nature of ADPKD, blood urea nitrogen and serum creatinine levels were continuously measured to assess the pig kidney function. The transgenic pigs continue to show no significant alteration in kidney function; it is estimated that 1–2 more years may be required for manifestation of renal cystogenesis in these pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Aigner B, Renner S, Kessler B, Klymiuk N, Kurome M, Wunsch A, Wolf E (2010) Transgenic pigs as models for translational biomedical research. J Mol Med (Berl) 88(7):653–664. doi:10.1007/s00109-010-0610-9

    Article  Google Scholar 

  • Burtey S, Riera M, Ribe E, Pennekamp P, Passage E, Rance R, Dworniczak B, Fontes M (2008) Overexpression of PKD2 in the mouse is associated with renal tubulopathy. Nephrol Dial Transplant 23(4):1157–1165. doi:10.1093/ndt/gfm763

    Article  PubMed  CAS  Google Scholar 

  • Chapin HC, Caplan MJ (2010) The cell biology of polycystic kidney disease. J Cell Biol 191(4):701–710. doi:10.1083/jcb.201006173

    Article  PubMed  CAS  Google Scholar 

  • Dooley JJ, Paine KE, Garrett SD, Brown HM (2004) Detection of meat species using TaqMan real-time PCR assays. Meat Sci 68(3):431–438. doi:10.1016/j.meatsci.2004.04.010

    Article  PubMed  CAS  Google Scholar 

  • Gabow PA (1990) Autosomal dominant polycystic kidney disease—more than a renal disease. Am J Kidney Dis 16(5):403–413

    PubMed  CAS  Google Scholar 

  • Gallagher AR, Hoffmann S, Brown N, Cedzich A, Meruvu S, Podlich D, Feng Y, Konecke V, de Vries U, Hammes HP, Gretz N, Witzgall R (2006) A truncated polycystin-2 protein causes polycystic kidney disease and retinal degeneration in transgenic rats. J Am Soc Nephrol 17(10):2719–2730. doi:10.1681/ASN.2005090979

    Article  PubMed  CAS  Google Scholar 

  • Geng L, Segal Y, Peissel B, Deng N, Pei Y, Carone F, Rennke HG, Glucksmann-Kuis AM, Schneider MC, Ericsson M, Reeders ST, Zhou J (1996) Identification and localization of polycystin, the PKD1 gene product. J Clin Invest 98(12):2674–2682. doi:10.1172/JCI119090

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci USA 98(3):1182–1187

    Article  PubMed  CAS  Google Scholar 

  • Guay-Woodford LM (2003) Murine models of polycystic kidney disease: molecular and therapeutic insights. Am J Physiol Renal Physiol 285(6):F1034–F1049. doi:10.1152/ajprenal.00195.2003

    PubMed  CAS  Google Scholar 

  • Hateboer N, v Dijk MA, Bogdanova N, Coto E, Saggar-Malik AK, San Millan JL, Torra R, Breuning M, Ravine D (1999) Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet 353(9147):103–107

    Google Scholar 

  • He J, Wang Q, Ye J, Hu X, Li N (2011) Identification of porcine polycystic kidney disease 1 (PKD1) gene: molecular cloning, expression profile, and implication in disease model. Gene 490(1–2):37–46. doi:10.1016/j.gene.2011.08.027

    Article  PubMed  CAS  Google Scholar 

  • Kimberling WJ, Kumar S, Gabow PA, Kenyon JB, Connolly CJ, Somlo S (1993) Autosomal dominant polycystic kidney disease: localization of the second gene to chromosome 4q13-q23. Genomics 18(3):467–472

    Article  PubMed  CAS  Google Scholar 

  • Koptides M, Mean R, Demetriou K, Pierides A, Deltas CC (2000) Genetic evidence for a trans-heterozygous model for cystogenesis in autosomal dominant polycystic kidney disease. Hum Mol Genet 9(3):447–452

    Article  PubMed  CAS  Google Scholar 

  • Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4(3):191–197. doi:10.1038/ncb754

    Article  PubMed  CAS  Google Scholar 

  • Koupepidou P, Felekkis KN, Kranzlin B, Sticht C, Gretz N, Deltas C (2010) Cyst formation in the PKD2 (1–703) transgenic rat precedes deregulation of proliferation-related pathways. BMC Nephrol 11:23. doi:10.1186/1471-2369-11-23

    Article  PubMed  Google Scholar 

  • Kragh PM, Nielsen AL, Li J, Du Y, Lin L, Schmidt M, Bogh IB, Holm IE, Jakobsen JE, Johansen MG, Purup S, Bolund L, Vajta G, Jorgensen AL (2009) Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw. Transgenic Res 18(4):545–558. doi:10.1007/s11248-009-9245-4

    Article  PubMed  CAS  Google Scholar 

  • Kurbegovic A, Cote O, Couillard M, Ward CJ, Harris PC, Trudel M (2010) Pkd1 transgenic mice: adult model of polycystic kidney disease with extrarenal and renal phenotypes. Hum Mol Genet 19(7):1174–1189. doi:10.1093/hmg/ddp588

    Article  PubMed  CAS  Google Scholar 

  • Lantinga-van Leeuwen IS, Dauwerse JG, Baelde HJ, Leonhard WN, van de Wal A, Ward CJ, Verbeek S, Deruiter MC, Breuning MH, de Heer E, Peters DJ (2004) Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum Mol Genet 13(24):3069–3077. doi:10.1093/hmg/ddh336

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Wei H, Guo Y, Li Y, Zhao R, Ma Y, Yu Z, Tang B, Zhang L, Dai Y, Li N (2009) Production of human lysozyme-transgenic cloned porcine embryos by somatic nuclear transfer. Prog Nat Sci 19:699–704. doi:10.1016/j.pnsc.2008.04.021

    Article  CAS  Google Scholar 

  • Liu S, Li X, Lu D, Shang S, Wang M, Zheng M, Zhang R, Tang B, Li Q, Dai Y, Li N (2012) High-level expression of bioactive recombinant human lysozyme in the milk of transgenic mice using a modified human lactoferrin BAC. Transgenic Res 21(2):407–414. doi:10.1007/s11248-011-9536-4

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  • Lunney JK (2007) Advances in swine biomedical model genomics. Int J Biol Sci 3(3):179–184

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272(5266):1339–1342

    Article  PubMed  CAS  Google Scholar 

  • Ong AC, Ward CJ, Butler RJ, Biddolph S, Bowker C, Torra R, Pei Y, Harris PC (1999) Coordinate expression of the autosomal dominant polycystic kidney disease proteins, polycystin-2 and polycystin-1, in normal and cystic tissue. Am J Pathol 154(6):1721–1729. doi:10.1016/S0002-9440(10)65428-4

    Article  PubMed  CAS  Google Scholar 

  • Park EY, Sung YH, Yang MH, Noh JY, Park SY, Lee TY, Yook YJ, Yoo KH, Roh KJ, Kim I, Hwang YH, Oh GT, Seong JK, Ahn C, Lee HW, Park JH (2009) Cyst formation in kidney via B-Raf signaling in the PKD2 transgenic mice. J Biol Chem 284(11):7214–7222. doi:10.1074/jbc.M805890200

    Article  PubMed  CAS  Google Scholar 

  • Pignatelli PM, Pound SE, Carothers AD, Macnicol AM, Allan PL, Watson ML, Wright AF (1992) Multipoint mapping of adult onset polycystic kidney disease (PKD1) on chromosome 16. J Med Genet 29(9):638–641

    Article  PubMed  CAS  Google Scholar 

  • Pritchard L, Sloane-Stanley JA, Sharpe JA, Aspinwall R, Lu W, Buckle V, Strmecki L, Walker D, Ward CJ, Alpers CE, Zhou J, Wood WG, Harris PC (2000) A human PKD1 transgene generates functional polycystin-1 in mice and is associated with a cystic phenotype. Hum Mol Genet 9(18):2617–2627

    Article  PubMed  CAS  Google Scholar 

  • Reeders ST (1992) Multilocus polycystic disease. Nat Genet 1(4):235–237. doi:10.1038/ng0792-235

    Article  PubMed  CAS  Google Scholar 

  • Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, Kabel AC, Wohlford-Lenane CL, Davis GJ, Hanfland RA, Smith TL, Samuel M, Wax D, Murphy CN, Rieke A, Whitworth K, Uc A, Starner TD, Brogden KA, Shilyansky J, McCray PB Jr, Zabner J, Prather RS, Welsh MJ (2008) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321(5897):1837–1841. doi:10.1126/science.1163600

    Article  PubMed  CAS  Google Scholar 

  • Serra AL, Poster D, Kistler AD, Krauer F, Raina S, Young J, Rentsch KM, Spanaus KS, Senn O, Kristanto P, Scheffel H, Weishaupt D, Wuthrich RP (2010) Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med 363(9):820–829. doi:10.1056/NEJMoa0907419

    Article  PubMed  CAS  Google Scholar 

  • Thivierge C, Kurbegovic A, Couillard M, Guillaume R, Cote O, Trudel M (2006) Overexpression of PKD1 causes polycystic kidney disease. Mol Cell Biol 26(4):1538–1548. doi:10.1128/MCB.26.4.1538-1548.2006

    Article  PubMed  CAS  Google Scholar 

  • Torres VE, Harris PC (2009) Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int 76(2):149–168. doi:10.1038/ki.2009.128

    Article  PubMed  Google Scholar 

  • Vassilev PM, Guo L, Chen XZ, Segal Y, Peng JB, Basora N, Babakhanlou H, Cruger G, Kanazirska M, Ye C, Brown EM, Hediger MA, Zhou J (2001) Polycystin-2 is a novel cation channel implicated in defective intracellular Ca(2+) homeostasis in polycystic kidney disease. Biochem Biophys Res Commun 282(1):341–350. doi:10.1006/bbrc.2001.4554

    Article  PubMed  CAS  Google Scholar 

  • Walz G, Budde K, Mannaa M, Nurnberger J, Wanner C, Sommerer C, Kunzendorf U, Banas B, Horl WH, Obermuller N, Arns W, Pavenstadt H, Gaedeke J, Buchert M, May C, Gschaidmeier H, Kramer S, Eckardt KU (2010) Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med 363(9):830–840. doi:10.1056/NEJMoa1003491

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Yin H, He J, Ye J, Ding F, Wang S, Hu X, Meng Q, Li N (2011) cDNA cloning of porcine PKD2 gene and RNA interference in LLC-PK1 cells. Gene 476(1–2):38–45. doi:10.1016/j.gene.2011.01.017

    Article  PubMed  CAS  Google Scholar 

  • Wei H, Li Q, Li J, Li Y, Dai Y, Ma Y, Xue K, Li N (2008) Effect of leptin on oocyte maturation and subsequent pregnancy rate of cloned embryos reconstructed by somatic cell nuclear transfer in pigs. Prog Nat Sci 18:1583–1587. doi:10.1016/j.pnsc.2008.05.018

    Article  CAS  Google Scholar 

  • Wilson PD (2004) Polycystic kidney disease. N Engl J Med 350(2):151–164. doi:10.1056/NEJMra022161

    Article  PubMed  CAS  Google Scholar 

  • Wilson PD (2008) Mouse models of polycystic kidney disease. Curr Top Dev Biol 84:311–350. doi:10.1016/S0070-2153(08)00606-6

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Wang CE, Zhao B, Li W, Ouyang Z, Liu Z, Yang H, Fan P, O’Neill A, Gu W, Yi H, Li S, Lai L, Li XJ (2010) Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Hum Mol Genet 19(20):3983–3994. doi:10.1093/hmg/ddq313

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Basic Research Program of China (No. 2011CB944100). We are grateful to members of the State Key Laboratory for Agrobiotechnology for helpful suggestions and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Li.

Additional information

Jin He and Jianhua Ye contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Ye, J., Li, Q. et al. Construction of a transgenic pig model overexpressing polycystic kidney disease 2 (PKD2) gene. Transgenic Res 22, 861–867 (2013). https://doi.org/10.1007/s11248-012-9686-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-012-9686-z

Keywords

Navigation