Skip to main content
Log in

Heterologous expression of cellobiohydrolase II (Cel6A) in maize endosperm

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The technology of converting lignocellulose to biofuels has advanced swiftly over the past few years, and enzymes are a significant constituent of this technology. In this regard, cost effective production of cellulases has been the focus of research for many years. One approach to reach cost targets of these enzymes involves the use of plants as bio-factories. The application of this technology to plant biomass conversion for biofuels and biobased products has the potential for significantly lowering the cost of these products due to lower enzyme production costs. Cel6A, one of the two cellobiohydrolases (CBH II) produced by Hypocrea jecorina, is an exoglucanase that cleaves primarily cellobiose units from the non-reducing end of cellulose microfibrils. In this work we describe the expression of Cel6A in maize endosperm as part of the process to lower the cost of this dominant enzyme for the bioconversion process. The enzyme is active on microcrystalline cellulose as exponential microbial growth was observed in the mixture of cellulose, cellulases, yeast and Cel6A, Cel7A (endoglucanase), and Cel5A (cellobiohydrolase I) expressed in maize seeds. We quantify the amount accumulated and the activity of the enzyme. Cel6A expressed in maize endosperm was purified to homogeneity and verified using peptide mass finger printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aden A, Foust T (2009) Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 16:535–545

    Article  CAS  Google Scholar 

  • An G, Mitra A, Choi HK, Costa MA, An K, Thornburg RW, Ryan CA (1989) Functional analysis of the 3[prime] control region of the potato wound-inducible proteinase inhibitor II gene. Plant Cell Online 1:115–122

    CAS  Google Scholar 

  • Baker J, Ehrman C, Adney W, Thomas S, Himmel M (1998) Hydrolysis of cellulose using ternary mixtures of purified celluloses. Appl Biochem Biotechnol 70–72:395–403

    Article  Google Scholar 

  • Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620

    Article  PubMed  CAS  Google Scholar 

  • Boisset C, Fraschini C, Schülein M, Henrissat B, Chanzy H (2000) Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Appl Environ Microbiol 66:1444–1452

    Article  PubMed  CAS  Google Scholar 

  • Carere C, Sparling R, Cicek N, Levin D (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9:1342–1360

    Article  PubMed  CAS  Google Scholar 

  • Clarke ND (2010) Protein engineering for bioenergy and biomass-based chemicals. Membr Eng Des 20:527–532

    CAS  Google Scholar 

  • Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles J, Teeri T, Jones T (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265:524–528

    Article  PubMed  CAS  Google Scholar 

  • Gray BN, Ahner BA, Hanson MR (2008) High-level bacterial cellulase accumulation in chloroplast-transformed tobacco mediated by downstream box fusions. Biotechnol Bioeng 102(4):1045–1054

    Article  Google Scholar 

  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  PubMed  Google Scholar 

  • Hayden C, Fake G, Carroll J, Hood E, Howard J (2012) Synergistic activity of plant extracts with microbial cellulases for the release of free sugars. BioEnergy Res 5(2):398–406

    Article  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282

    Article  PubMed  CAS  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Vicuna Requesens D (2012) Recombinant protein production in plants: challenges and solutions. In: Lorence A (ed) Methods in molecular biology: recombinant gene expression, reviews and protocols. Springer Science+Business Media, Dordrecht, pp 469–481

    Chapter  Google Scholar 

  • Hood E, Woodard S (2002) Industrial proteins produced from transgenic plants. In: Hood EE, Howard JA (eds) Plants as factories for protein production. Kluwer, Dordrecht, pp 119–135

    Chapter  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    PubMed  CAS  Google Scholar 

  • Hood EE, Bailey MR, Beifuss K, Magallanes-Lundback M, Horn ME, Callaway E, Drees C, Delaney DE, Clough R, Howard JA (2003) Criteria for high-level expression of a fungal laccase gene in transgenic maize. Plant Biotechnol J 1:129–140

    Article  PubMed  CAS  Google Scholar 

  • Hood E, Love R, Lane J, Bray J, Clough R, Pappu K, Drees C, Hood K, Yoon S, Ahmad A (2007) Subcellular targeting is a key condition for high-level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnol J 5:709–719

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Devaiah SP, Fake G, Egelkrout E, Teoh K, Requesens DV, Hayden C, Hood KR, Pappu KM, Carroll J, Howard JA (2012) Manipulating corn germplasm to increase recombinant protein accumulation. Plant Biotechnol J 10:20–30

    Article  PubMed  CAS  Google Scholar 

  • Howard JA, Hood E (2005) Bioindustrial and biopharmaceutical products produced in plants. Adv Agron 85:91–124

    Article  CAS  Google Scholar 

  • Howard J, Nikolov Z, Hood E (2011) Enzyme production systems for biomass conversion. In: Hood E, Nelson P, Powell R (eds) Plant biomass conversion. Wiley-Blackwell, Ames, pp 227–253

    Chapter  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Flores R, Fake G, Carroll J, Hood E, Howard J (2010) A novel method for evaluating the release of fermentable sugars from cellulosic biomass. Enzyme Microbial Technol 47:206–211

    Article  CAS  Google Scholar 

  • Koivula A, Ruohonen L, Wohlfahrt G, Reinikainen T, Teeri TT, Piens K, Claeyssens M, Weber M, Vasella A, Becker D, Sinnott ML, Zou J-y, Kleywegt GJ, Szardenings M, Ståhlberg J, Jones TA (2002) The active site of cellobiohydrolase Cel6A from Trichoderma reesei: the roles of aspartic acids D221 and D175. J Am Chem Soc 124:10015–10024

    Article  PubMed  CAS  Google Scholar 

  • Lantz SE, Goedegebuur F, Hommes R, Kaper T, Kelemen BR, Mitchinson C, Wallace L, Ståhlberg J, Larenas EA (2010) Hypocrea jecorina CEL6A protein engineering. Biotechnol Biofuels 3:20–33

    Article  PubMed  Google Scholar 

  • Liu Y-S, Baker JO, Zeng Y, Himmel ME, Haas T, Ding S-Y (2011) Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J Biol Chem 286:11195–11201

    Article  PubMed  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  PubMed  CAS  Google Scholar 

  • Morán J, Alvarez V, Cyras V, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

    Article  Google Scholar 

  • Moxley G, Zhu Z, Zhang YH (2008) Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. J Agric Food Chem 56:7885–7890

    Article  PubMed  CAS  Google Scholar 

  • Rogers JC (1985) Two barley alpha-amylase gene families are regulated differently in aleurone cells. J Biol Chem 260:3731–3738

    PubMed  CAS  Google Scholar 

  • Rouvinen J, Bergfors T, Teeri T, Knowles J, Jones T (1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249:380–386

    Article  PubMed  CAS  Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    Article  PubMed  CAS  Google Scholar 

  • Sainz M (2009) Commercial cellulosic ethanol: the role of plant-expressed enzymes. In Vitro Cell Dev Biol Plant 45:314–329

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  PubMed  Google Scholar 

  • Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci 105:464–469

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  • Streatfield S, Mayor J, Barker D, Brooks C, Lamphear B, Woodard S, Beifuss K, Vicuna D, Massey L, Horn M, Delaney D, Nikolov Z, Hood E, Jilka J, Howard J (2002) Development of an edible subunit vaccine in corn against enterotoxigenic strains of escherichia coli. In Vitro Cell Dev Biol Plant 38:11–17

    Article  CAS  Google Scholar 

  • Takaiwa F, Kikuchi S, Oono K (1987) A rice glutelin gene family—a major type of glutelin mRNAs can be divided into two classes. Mol Gen Genet (MGG) 208:15–22

    Article  CAS  Google Scholar 

  • Tao L, Aden A (2009) The economics of current and future biofuels. In Vitro Cell Dev Biol Plant 45:199–217

    Article  Google Scholar 

  • Taylor LE, Dai Z, Decker SR, Brunecky R, Adney WS, Ding S-Y, Himmel ME (2008) Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol 26:413–424

    Article  PubMed  CAS  Google Scholar 

  • Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160–167

    Article  Google Scholar 

  • Teeri TT, Lehtovaara P, Kauppinen S, Salovuori I, Knowles J (1987) Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II. Gene 51:43–52

    Article  PubMed  CAS  Google Scholar 

  • Vicuna Requesens D, Egelkrout E, Devaiah S, Hood E (2010) A method for transient expression in maize endosperm. In Vitro Cell Dev Biol Plant 46:485–490

    Article  CAS  Google Scholar 

  • Voutilainen S, Boer H, Linder M, Puranen T, Rouvinen J, Vehmaanperä J, Koivula A (2007) Heterologous expression of Melanocarpus albomyces cellobiohydrolase Cel7B, and random mutagenesis to improve its thermostability. Enzyme Microbial Technol 41:234–243

    Article  CAS  Google Scholar 

  • Voutilainen S, Boer H, Alapuranen M, Jänis J, Vehmaanperä J, Koivula A (2009) Improving the thermostability and activity of Melanocarpus albomyces cellobiohydrolase Cel7B. Appl Microbiol Biotechnol 83:261–272

    Article  PubMed  CAS  Google Scholar 

  • White J, Chang SY, Bibb MJ, Bibb MJ (1990) A cassette containing the bar gene of Streptomyces hygroscopicus: a selectable marker for plant transformation. Nucleic Acids Res 18:1062

    Article  PubMed  CAS  Google Scholar 

  • Woodard S, Mayor J, Bailey M, Barker D, Love R, Lane J, Delaney D, McComas-Wagner J, Mallubhotla H, Hood E (2003) Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem 38:123–130

    Article  PubMed  CAS  Google Scholar 

  • Wu C-Y, Washida H, Onodera Y, Harada K, Takaiwa F (2000) Quantitative nature of the prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal cis-element requirements for endosperm-specific gene expression. Plant J 23:415–421

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Tiller K, Al-Ahmad H, Stewart N, Stewart C Jr (2004) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:412–429

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the US Department of Energy (DE FG36 GO88025) with cost share from the Wal-Mart Foundation, the Walton Family Foundation, and Arkansas State University. The authors would like to thank Dr. Brett Savary and Dr. Prasanna Vasu, Arkansas Biosciences Institute, Arkansas State University, for the use of the HPLC and MALDI–TOF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth E. Hood.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11248_2012_9659_MOESM1_ESM.pptx

Fig. S1: Vector NTI map of transformation vector. Vector CDN (Os Glutelin Promoter and Cel6A, or CBH II). BAASS: barley alpha amylase signal sequence, CAMV35S: cauliflower mosaic virus 35S promoter and terminator, COLE1: E. coli replication origin, LB: left border, moPAT: maize-optimized phosphinothricin acetyl transferase gene, OsGlu: Oryza sativa (Rice) Glutelin Promoter, PIN II: potato protease inhibitor II terminator, RB: right border, COS: cointegration sequence for pSB1, SpecR: spectinomycin resistance. Supplementary material 1 (PPTX 151 kb)

11248_2012_9659_MOESM2_ESM.pptx

Fig. S2: Purification of Cel6A. Coomassie blue stained acrylamide gel of purified Cel6A. M: molecular weight markers. Supplementary material 2 (PPTX 106 kb)

Supplementary material 3 (DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devaiah, S.P., Requesens, D.V., Chang, YK. et al. Heterologous expression of cellobiohydrolase II (Cel6A) in maize endosperm. Transgenic Res 22, 477–488 (2013). https://doi.org/10.1007/s11248-012-9659-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-012-9659-2

Keywords

Navigation