Skip to main content

Advertisement

Log in

Expression of the nos operon proteins from Pseudomonas stutzeri in transgenic plants to assemble nitrous oxide reductase

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Nitrous oxide (N2O) is a stable greenhouse gas that plays a significant role in the destruction of the ozone layer. Soils are a significant source of atmospheric N2O. It is important to explore some innovative and effective biology-based strategies for N2O mitigation. The enzyme nitrous oxide reductase (N2OR), naturally found in soil bacteria, is responsible for catalysing the final step of the denitrification pathway, conversion of N2O to dintrogen gas (N2). To transfer this catalytic pathway from soil into plants and amplify the abundance of this essential mechanism (to reduce global warming), a mega-cassette of five coding sequences was assembled to produce transgenic plants heterologously expressing the bacterial nos operon in plant leaves. Both the single-gene transformants (nosZ) and the multi-gene transformants (nosFLZDY) produced active recombinant N2OR. Enzymatic activity was detected using the methyl viologen-linked enzyme assay, showing that extracts from both types of transgenic plants exhibited N2O-reducing activity. Remarkably, the single-gene strategy produced higher reductase capability than the whole-operon approach. The data indicate that bacterial N2OR expressed in plants could convert N2O into inert N2 without involvement of other Nos proteins. Silencing by homologous signal sequences, or cryptic intracellular targeting are possible explanations for the low activities obtained. Expressing N2OR from Pseudomonas stutzeri in single-gene transgenic plants indicated that such ag-biotech solutions to climate change have the potential to be easily incorporated into existing genetically modified organism seed germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alli Z, Sardana RK, Pierre B, Andonov A, Robert LS, Schernthaner JP, Porter SL, Dudani AK, Ganz PR, Tackaberry ES, Altosaar I (2002) Pharming vaccines for hepatitis and cytomegalovirus: towards the development of multivalent and subunit vaccines for oral delivery of antigens. Phytochem Rev 1:55–66

    Article  CAS  Google Scholar 

  • Awai K, Xu CC, Tamot B, Benning C (2006) A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. Proc Natl Acad Sci USA 103:10817–10822

    Article  PubMed  CAS  Google Scholar 

  • Blais DR, Altosaar I (2006) Human CD14 expressed in seeds of transgenic tobacco displays similar proteolytic resistance and bioactivity with its mammalian-produced counterpart. Transgen Res 15:151–164

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Varner JE (1985) An extracellular-matrix protein in plants: characterization of a genomic clone for carrot extensin. EMBO J 4:2145–2151

    PubMed  CAS  Google Scholar 

  • Cheng XY, Sardana R, Kaplan H, Altosaar I (1998) Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci USA 95:2767–2772

    Article  PubMed  CAS  Google Scholar 

  • Datla RSS, Hammerlindl JK, Panchuk B, Pelcher LE, Keller W (1992) Modified binary plant transformation vectors with the wild-type gene encoding NPTII. Gene 122:383–384

    Article  PubMed  CAS  Google Scholar 

  • Davidson EA (2009) The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat Geosci 2:659–662

    Article  CAS  Google Scholar 

  • Del Grosso SJ (2010) Climate change: grazing and nitrous oxide. Nature 464:843–844

    Article  PubMed  CAS  Google Scholar 

  • Dell’Acqua S, Pauleta SR, Paes de Sousa PM, Monzani E, Casella L, Moura JJ, Moura I (2010) A new CuZ active form in the catalytic reduction of N2O by nitrous oxide reductase from Pseudomonas nautica. J Biol Inorg Chem 15:967–976

    Article  PubMed  Google Scholar 

  • Foresight (2011) The future of food and farming. Final project report. The Government Office for Science, London

    Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn NR, Raga G, Schulz M, Dorland RV (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z (eds) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Gorelsky SI, Ghosh S, Solomon EI (2006) Mechanism of N2O reduction by the μ4-S tetranuclear Cuz cluster of nitrous oxide reductase. J Am Chem Soc 128:278–290

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general-method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    Article  PubMed  CAS  Google Scholar 

  • Kristjansson JK, Hollocher TC (1980) First practical assay for soluble nitrous oxide reductase of denitrifying bacteria and a partial kinetic characterization. J Biol Chem 255:704–707

    PubMed  CAS  Google Scholar 

  • Liu XQ, Gao CX, Zhang AX, Jin P, Wang L, Feng L (2008) The nos gene cluster from gram-positive bacterium Geobacillus thermodenitrificans NG80–2 and functional characterization of the recombinant NosZ. FEMS Microbiol Lett 289:46–52

    Article  PubMed  CAS  Google Scholar 

  • Matsubara T, Frunzke K, Zumft WG (1982) Modulation by copper of the products of nitrite respiration in Pseudomonas perfectomarinus. J Bacteriol 149:816–823

    PubMed  CAS  Google Scholar 

  • Neumann B, Pospiech A, Schairer HU (1992) Rapid isolation of genomic DNA from gram-negative bacteria. Trends Genet 8:332–333

    PubMed  CAS  Google Scholar 

  • Panahi M, Alli Z, Cheng XY, Belbaraka L, Belgoudi J, Sardana R, Phipps J, Altosaar I (2004) Recombinant protein expression plasmids optimized for industrial E. coli fermentation and plant systems produce biologically active human insulin-like growth factor-1 in transgenic rice and tobacco plants. Transgen Res 13:245–259

    Article  CAS  Google Scholar 

  • Pomowski A, Zumft WG, Kroneck PM, Einsle O (2010) Crystallization of purple nitrous oxide reductase from Pseudomonas stutzeri. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:1541–1543

    Article  PubMed  Google Scholar 

  • Prescott VE, Campbell PM, Moore A, Mattes J, Rothenberg ME, Foster PS, Higgins TJ, Hogan SP (2005) Transgenic expression of bean alpha-amylase inhibitor in peas results in altered structure and immunogenicity. J Agric Food Chem 53:9023–9030

    Article  PubMed  CAS  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  PubMed  CAS  Google Scholar 

  • Reay DS, Hewitt CN, Smith KA (2007) Nitrous oxide: importance, sources and sinks. In: Reay DS, Hewitt CN, Smith K, Grace J (eds) Greenhouse gas sinks. CAB International, Oxfordshire, pp 201–206

    Chapter  Google Scholar 

  • Richardson D, Felgate H, Watmough N, Thomson A, Baggs E (2009) Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle—could enzymic regulation hold the key? Trends Biotechnol 27:388–397

    Article  PubMed  CAS  Google Scholar 

  • Smart DR, Bloom AJ (2001) Wheat leaves emit nitrous oxide during nitrate assimilation. Proc Natl Acad Sci USA 98:7875–7878

    Article  PubMed  CAS  Google Scholar 

  • Suharti S, de Vries S (2005) Membrane-bound denitrification in the Gram-positive bacterium Bacillus azotoformans. Biochem Soc Trans 33:130–133

    Article  PubMed  CAS  Google Scholar 

  • Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 472:159–161

    Article  PubMed  CAS  Google Scholar 

  • Viebrock A, Zumft WG (1988) Molecular cloning, heterologous expression, and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifying Pseudomonas stutzeri. J Bacteriol 170:4658–4668

    PubMed  CAS  Google Scholar 

  • Wanke D, Uner Kolukisaoglu H (2010) An update on the ABCC transporter family in plants: many genes, many proteins, but how many functions? Plant Biol (Stuttgart) 12:15–25

    Article  CAS  Google Scholar 

  • Wolf B, Zheng XH, Brueggemann N, Chen WW, Dannenmann M, Han XG, Sutton MA, Wu HH, Yao ZS, Butterbach-Bahl K (2010) Grazing-induced reduction of natural nitrous oxide release from continental steppe. Nature 464:881–884

    Article  PubMed  CAS  Google Scholar 

  • Wrage N, Velthof GL, van Beusichem ML, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732

    Article  CAS  Google Scholar 

  • Wunsch P, Herb M, Wieland H, Schiek UM, Zumft WG (2003) Requirements for CuA and Cu-S center assembly of nitrous oxide reductase deduced from complete periplasmic enzyme maturation in the nondenitrifier Pseudomonas putida. J Bacteriol 185:887–896

    Article  PubMed  CAS  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    PubMed  CAS  Google Scholar 

  • Zumft WG (2005) Biogenesis of the bacterial respiratory CuA, Cu-S enzyme nitrous oxide reductase. J Mol Microbiol Biotechnol 10:154–166

    Article  PubMed  CAS  Google Scholar 

  • Zumft WG, Kroneck PM (2007) Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. Adv Microb Physiol 52:107–227

    Article  PubMed  CAS  Google Scholar 

  • Zumft WG, Matsubara T (1982) A novel kind of multi-copper protein as terminal oxidoreductase of nitrous oxide respiration in Pseudomonas perfectomarinus. FEBS Lett 148:107–112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council (NSERC) and its industrial and government partners through the Green Crop Network. We also gratefully acknowledge Carlos Monreal (Agriculture and Agri-Food Canada) for guidance and Qing-yao Shu (Food and Agriculture Organisation of the United Nations/International Atomic Energy Agency) for catalysing our focus on nitrous oxide; Anastassia Voronova for purifying N2OR from P. stutzeri; W.G. Zumft (Karlsruhe Institute of Technology) for supplying anti-N2OR rabbit serum; and S. Sattar (University of Ottawa) for his excellent technical support and support with anaerobic chamber use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Illimar Altosaar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 481 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, S., Mottiar, Y., Johnson, A.M. et al. Expression of the nos operon proteins from Pseudomonas stutzeri in transgenic plants to assemble nitrous oxide reductase. Transgenic Res 21, 593–603 (2012). https://doi.org/10.1007/s11248-011-9555-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-011-9555-1

Keywords

Navigation