Skip to main content
Log in

Disruption of the Survival Motor Neuron (SMN) gene in pigs using ssDNA

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Spinal Muscular Atrophy (SMA) is an autosomal recessive neurodegenerative disease that is a result of a deletion or mutation of the SMN1 (Survival Motor Neuron) gene. A duplicated and nearly identical copy, SMN2, serves as a disease modifier as increasing SMN2 copy number decreases the severity of the disease. Currently many therapeutic approaches for SMA are being developed. Therapeutic strategies aim to modulate splicing of SMN2-derived transcripts, increase SMN2 gene expression, increase neuro-protection of motor neurons, stabilize the SMN protein, replace the SMN1 gene and reconstitute the motor neuron population. It is our goal to develop a pig animal model of SMA for the development and testing of therapeutics and evaluation of toxicology. In the development of a SMA pig model, it was important to demonstrate that the human SMN2 gene would splice appropriately as the model would be based on the presence of the human SMN2 transgene. In this manuscript, we show splicing of the human SMN1 and SMN2 mini-genes in porcine cells is consistent with splicing in human cells, and we report the first genetic knockout of a gene responsible for a neurodegenerative disease in a large animal model using gene targeting with single-stranded DNA and somatic cell nuclear transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andreassi C, Jarecki J, Zhou J, Coovert DD, Monani UR, Chen X, Whitney M, Pollok B, Zhang M, Androphy E et al (2001) Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients. Hum Mol Genet 10:2841–2849

    Article  PubMed  CAS  Google Scholar 

  • Andreassi C, Angelozzi C, Tiziano FD, Vitali T, De Vincenzi E, Boninsegna A, Villanova M, Bertini E, Pini A, Neri G et al (2004) Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur J Hum Genet 12:59–65

    Article  PubMed  CAS  Google Scholar 

  • Baughan T, Shababi M, Coady TH, Dickson AM, Tullis GE, Lorson CL (2006) Stimulating full-length SMN2 expression by delivering bifunctional RNAs via a viral vector. Mol Ther 14:54–62

    Article  PubMed  CAS  Google Scholar 

  • Baughan TD, Dickson A, Osman EY, Lorson CL (2009) Delivery of bifunctional RNAs that target an intronic repressor and increase SMN levels in an animal model of spinal muscular atrophy. Hum Mol Genet 18:1600–1611

    Article  PubMed  CAS  Google Scholar 

  • Brichta L, Hofmann Y, Hahnen E, Siebzehnrubl FA, Raschke H, Blumcke I, Eyupoglu IY, Wirth B (2003) Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 12:2481–2489

    Article  PubMed  CAS  Google Scholar 

  • Butchbach ME, Singh J, Thorsteinsdottir M, Saieva L, Slominski E, Thurmond J, Andresson T, Zhang J, Edwards JD, Simard LR et al (2010) Effects of 2, 4-diaminoquinazoline derivatives on SMN expression and phenotype in a mouse model for spinal muscular atrophy. Hum Mol Genet 19:454–467

    Article  PubMed  CAS  Google Scholar 

  • Cartegni L, Krainer AR (2002) Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 30:377–384

    Article  PubMed  CAS  Google Scholar 

  • Chang JG, Hsieh-Li HM, Jong YJ, Wang NM, Tsai CH, Li H (2001) Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci USA 98:9808–9813

    Article  PubMed  CAS  Google Scholar 

  • Coady TH, Lorson CL (2010) Trans-splicing-mediated improvement in a severe mouse model of spinal muscular atrophy. J Neurosci 30:126–130

    Article  PubMed  CAS  Google Scholar 

  • Coady TH, Baughan TD, Shababi M, Passini MA, Lorson CL (2008) Development of a single vector system that enhances trans-splicing of SMN2 transcripts. PLoS One 3:e3468

    Article  PubMed  Google Scholar 

  • Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE et al (2002) Targeted disruption of the alpha 1, 3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20:251–255

    Article  PubMed  CAS  Google Scholar 

  • Dominguez E, Marais T, Chatauret N, Benkhelifa-Ziyyat S, Duque S, Ravassard P, Carcenac R, Astord S, de Moura AP, Voit T, Barkats M (2011) Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet 20:681–693

    Article  PubMed  CAS  Google Scholar 

  • Elsheikh B, Prior T, Zhang X, Miller R, Kolb SJ, Moore D, Bradley W, Barohn R, Bryan W, Gelinas D et al (2009) An analysis of disease severity based on SMN2 copy number in adults with spinal muscular atrophy. Muscle Nerve 40:652–656

    Article  PubMed  Google Scholar 

  • Foust KD, Wang X, McGovern VL, Braun L, Bevan AK, Haidet AM, Le TT, Morales PR, Rich MM, Burghes AH et al (2010) Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol 28:271–274

    Article  PubMed  CAS  Google Scholar 

  • Geib T, Hertel KJ (2009) Restoration of full-length SMN promoted by adenoviral vectors expressing RNA antisense oligonucleotides embedded in U7 snRNAs. PLoS One 4:e8204

    Article  PubMed  Google Scholar 

  • Hastings ML, Berniac J, Liu YH, Abato P, Jodelka FM, Barthel L, Kumar S, Dudley C, Nelson M, Larson K et al (2009) Tetracyclines that promote SMN2 exon 7 splicing as therapeutics for spinal muscular atrophy. Sci Transl Med 1:5ra12

    Article  PubMed  Google Scholar 

  • Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H (2000) A mouse model for spinal muscular atrophy. Nat Genet 24:66–70

    Article  PubMed  CAS  Google Scholar 

  • Hua Y, Vickers T, Okunola H, Bennett C, Krainer, A (2008) Antisense masking of an hnRNP A1/A2 intronic splice silencer corrects SMN2 splicing in transgenic mice. Am J Hum Genet 82:834–848

    Article  PubMed  CAS  Google Scholar 

  • Hua Y, Sahaski K, Hung G, Rigo F, Passini M, Bennett C, Krainer A (2010) Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 24:1634–1644

    Article  PubMed  CAS  Google Scholar 

  • Lai L, Prather RS (2003) Creating genetically modified pigs by using nuclear transfer. Reprod Biol Endocrinol 1:82

    Article  PubMed  Google Scholar 

  • Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN et al (2002) Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089–1092

    Article  PubMed  CAS  Google Scholar 

  • Le TT, Pham LT, Butchbach ME, Zhang HL, Monani UR, Coovert DD, Gavrilina TO, Xing L, Bassell GJ, Burghes AH (2005) SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet 14:845–857

    Article  PubMed  CAS  Google Scholar 

  • Lim SR, Hertel KJ (2001) Modulation of survival motor neuron pre-mRNA splicing by inhibition of alternative 3′ splice site pairing. J Biol Chem 276:45476–45483

    Article  PubMed  CAS  Google Scholar 

  • Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA 96:6307–6311

    Article  PubMed  CAS  Google Scholar 

  • Lorson MA, Spate LD, Prather RS, Lorson CL (2008) Identification and characterization of the porcine (Sus scrofa) survival motor neuron (SMN1) gene: an animal model for therapeutic studies. Dev Dyn 237:2268–2278

    Article  PubMed  CAS  Google Scholar 

  • Lorson CL, Rindt H, Shababi M (2010) Spinal muscular atrophy: mechanisms and therapeutic strategies. Hum Mol Genet 19:111–118

    Article  Google Scholar 

  • Machaty Z, Wang WH, Day BN, Prather RS (1997) Complete activation of porcine oocytes induced by the sulfhydryl reagent, thimerosal. Biol Reprod 57:1123–1127

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie A (2010) Genetic therapy for spinal muscular atrophy. Nat Biotechnol 28:235–237

    Article  PubMed  CAS  Google Scholar 

  • Madocsai C, Lim SR, Geib T, Lam BJ, Hertel KJ (2005) Correction of SMN2 Pre-mRNA splicing by antisense U7 small nuclear RNAs. Mol Ther 12:1013–1022

    Article  PubMed  CAS  Google Scholar 

  • Mattis VB, Rai R, Wang J, Chang CW, Coady T, Lorson CL (2006) Novel aminoglycosides increase SMN levels in spinal muscular atrophy fibroblasts. Hum Genet 120:589–601

    Article  PubMed  CAS  Google Scholar 

  • Mattis VB, Ebert AD, Fosso MY, Chang CW, Lorson CL (2009a) Delivery of a read-through inducing compound, TC007, lessens the severity of a spinal muscular atrophy animal model. Hum Mol Genet 18:3906–3913

    Article  PubMed  CAS  Google Scholar 

  • Mattis VB, Fosso MY, Chang CW, Lorson CL (2009b) Subcutaneous administration of TC007 reduces disease severity in an animal model of SMA. BMC Neurosci 10:142

    Article  PubMed  Google Scholar 

  • Michaud M, Arnoux T, Bielli S, Durand E, Rotrou Y, Jablonka S, Robert F, Giraudon-Paoli M, Riessland M, Mattei MG et al (2010) Neuromuscular defects and breathing disorders in a new mouse model of spinal muscular atrophy. Neurobiol Dis 38:125–135

    Article  PubMed  Google Scholar 

  • Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AH, McPherson JD (1999) A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 8:1177–1183

    Article  PubMed  CAS  Google Scholar 

  • Monani UR, Sendtner M, Coovert DD, Parsons DW, Andreassi C, Le TT, Jablonka S, Schrank B, Rossol W, Prior TW et al (2000) The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(−/−) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 9:333–339

    Article  PubMed  CAS  Google Scholar 

  • Monani UR, Pastore MT, Gavrilina TO, Jablonka S, Le TT, Andreassi C, DiCocco JM, Lorson C, Androphy EJ, Sendtner M et al (2003) A transgene carrying an A2G missense mutation in the SMN gene modulates phenotypic severity in mice with severe (type I) spinal muscular atrophy. J Cell Biol 160:41–52

    Article  PubMed  CAS  Google Scholar 

  • Passini MA, Bu J, Roskelley EM, Richards AM, Sardi SP, O’Riordan CR, Klinger KW, Shihabuddin LS, Cheng SH (2010) CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J Clin Invest 120:1253–1264

    Article  PubMed  CAS  Google Scholar 

  • Prior TW (2010) Perspectives and diagnostic considerations in spinal muscular atrophy. Genet Med 12:145–152

    Article  PubMed  CAS  Google Scholar 

  • Prior TW, Krainer AR, Hua Y, Swoboda KJ, Snyder PC, Bridgman SJ, Burghes AH, Kissel JT (2009) A positive modifier of spinal muscular atrophy in the SMN2 gene. Am J Hum Genet 85:408–413

    Article  PubMed  CAS  Google Scholar 

  • Riessland M, Ackermann B, Forster A, Jakubik M, Hauke J, Garbes L, Fritzsche I, Mende Y, Blumcke I, Hahnen E et al (2010) SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy. Hum Mol Genet 19:1492–1506

    Article  PubMed  CAS  Google Scholar 

  • Ross JW, Whyte JJ, Zhao J, Samuel M, Wells KD, Prather RS (2010) Optimization of square-wave electroporation for transfection of porcine fetal fibroblasts. Transgenic Res 19:611–620

    Article  PubMed  CAS  Google Scholar 

  • Schrank B, Gotz R, Gunnersen JM, Ure JM, Toyka KV, Smith AG, Sendtner M (1997) Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci USA 94:9920–9925

    Article  PubMed  CAS  Google Scholar 

  • Singh NN, Shishimorova M, Cao LC, Gangwani L, Singh RN (2009) A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy. RNA Biol 6:341–350

    Article  PubMed  CAS  Google Scholar 

  • Stavarachi M, Apostol P, Toma M, Cimponeriu D, Gavrila L (2010) Spinal muscular atrophy disease: a literature review for therapeutic strategies. J Med Life 3:3–9

    PubMed  CAS  Google Scholar 

  • Sumner CJ, Huynh TN, Markowitz JA, Perhac JS, Hill B, Coovert DD, Schussler K, Chen X, Jarecki J, Burghes AH et al (2003) Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann Neurol 54:647–654

    Article  PubMed  CAS  Google Scholar 

  • Thurmond J, Butchbach ME, Palomo M, Pease B, Rao M, Bedell L, Keyvan M, Pai G, Mishra R, Haraldsson M et al (2008) Synthesis and biological evaluation of novel 2, 4-diaminoquinazoline derivatives as SMN2 promoter activators for the potential treatment of spinal muscular atrophy. J Med Chem 51:449–469

    Article  PubMed  CAS  Google Scholar 

  • Valori CF, Ning K, Wyles M, Mead RJ, Grierson AJ, Shaw PJ, Azzouz M (2010) Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy. Sci Transl Med 2:35ra42

    Article  PubMed  Google Scholar 

  • Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15:228–237

    Article  PubMed  CAS  Google Scholar 

  • Wolstencroft EC, Mattis V, Bajer AA, Young PJ, Lorson CL (2005) A non-sequence-specific requirement for SMN protein activity: the role of aminoglycosides in inducing elevated SMN protein levels. Hum Mol Genet 14:1199–1210

    Article  PubMed  CAS  Google Scholar 

  • Zhang ML, Lorson CL, Androphy EJ, Zhou J (2001) An in vivo reporter system for measuring increased inclusion of exon 7 in SMN2 mRNA: potential therapy of SMA. Gene Ther 8:1532–1538

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Ross JW, Hao Y, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS (2009) Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer. Biol Reprod 81:525–530

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thank you to members of the C. Lorson, K. Wells and R. Prather laboratories for their assistance and generosity especially Martha Bennett, Chad O’Gorman, Erik Osman, Armedia Stump, Hans Rindt, August Rieke and Jason Dowell. This work was supported by FightSMA and National Institutes of Health [grant number NS059510 to MAL].

Conflict of interest

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique A. Lorson.

Additional information

Handling editor: Bruce Whitelaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorson, M.A., Spate, L.D., Samuel, M.S. et al. Disruption of the Survival Motor Neuron (SMN) gene in pigs using ssDNA. Transgenic Res 20, 1293–1304 (2011). https://doi.org/10.1007/s11248-011-9496-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-011-9496-8

Keywords

Navigation