Skip to main content
Log in

ROLC strawberry plant adaptability, productivity, and tolerance to soil-borne disease and mycorrhizal interactions

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The potential to improve strawberry cultivation was assessed regarding the use the rolC genes from Agrobacterium rhizogenes that can confer higher levels of free cytokinins. Strawberry (cv. Calypso) rolC lines were produced by genetic transformation of Agrobacterium tumefaciens. Yield and fruit quality of the control and transgenic lines were measured under open-field conditions. The effects of the transgenic rolC lines depended on gene copy number: rolC lines with one (Line A) or two gene (Line B) copies showed 30% greater yields than controls, due to 20% more fruit per plant and an increased fruit weight. Line A also differed in terms of the highest fruit quality, due to 10.5% increased soluble solids and 12.7% higher acidity. Moreover, cv. Calypso rolC lines A and B had increased tolerance to greenhouse infection by Phytophthora cactorum. Conversely, for all of these characters, Line F (five rolC copies) was not significantly different from the control line. The same lines were also used to examine their symbiosis with root arbuscular mycorrhizal fungi (AMF) using vital and non-vital staining of roots collected at different stages of plant growth. Control and rolC plants showed similar intensities of AMF infection according to plant phenology and/or physiology. Furthermore, possible horizontal gene transfer of the rolC gene was tested for the AMF spores by PCR, with all AMF samples negative using rolC primers. The use of the rolC gene should be considered for the improvements provided in productivity, fruit quality and disease resistance of cultivated strawberry that show no effects on soil microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Reference

  • Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens. An overview of the mechanisms involved. Mycorrhiza 6:457–464. doi:10.1007/s005720050147

    Article  Google Scholar 

  • Bettini P, Michelotti S, Bindi D, Giannini R, Capuana M, Buiatti M (2003) Pleiotropic effect of the insertion of the Agrobacterium rhizogenes rolD gene in tomato (Lycopersicon esculentum Mill.). Theor Appl Genet 107:831–836. doi:10.1007/s00122-003-1322-0

    Article  CAS  PubMed  Google Scholar 

  • Bohrer EK, Friese CF, Amon JP (2004) Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza 14:329–337. doi:10.1007/s00572-004-0292-7

    Article  PubMed  Google Scholar 

  • Bramwell PA, Barallon RV, Rogers HJ, Bailey MJ (1995) Extraction and PCR amplification of DNA from the rhizoplane. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual, vol 1.4.2.. Kluwer, Dordrecht, Netherlands, pp 1–20

    Google Scholar 

  • Casanova E, Zuker A, Trillas MI, Moysset L, Vainstein A (2003) The rolC gene in carnation exhibits cytokinin- and auxin-like activities. Sci Hortic (Amsterdam) 97:321–331. doi:10.1016/S0304-4238(02)00155-3

    Article  CAS  Google Scholar 

  • Daniels BA, Skipper HA (1982) Methods for the recovery and quantitative estimation of propagules from soil. In: Schenk NC (ed) Methods and principles of Mycorrhizal research. American phytopathological society. St. Paul, Minn, pp 29–35

    Google Scholar 

  • de Silva A, Patterson K, Mitchell J (1996) Endomycorrhizae and growth of ‘sweetheart’ strawberry seedlings. HortScience 31:951–954

    Google Scholar 

  • Dunfield KE, Germida JJ (2004) Impact of genetically modified crops on soil- and plant-associated microbial communities. J Environ Qual 33:806–815

    Article  CAS  PubMed  Google Scholar 

  • Gebhard F, Smalla K (1999) Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene. FEMS Microbiol Ecol 28:261–272. doi:10.1111/j.1574-6941.1999.tb00581

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Arnould C, Oufattole M, Arango M, Gianinazzi S (2000) Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211:609–613. doi:10.1007/s004250000323

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti M, Avio L (2002) Biotechnology of Arbuscular Mycorrhizas. In: Arora DK, Kachaturians GG (eds) Applied mycology and biotechnology. Vol. 2. Agriculture and food production. Elsevier Science B.V, Amsterdam, pp 275–310

    Google Scholar 

  • Hernandez M, Esteve T, Prat S, Pla M (2004) Development of real-time PCR systems based on SYBR Green I, Amplifluor and TaqMan technologies for specific quantitative detection of the transgenic maize event GA21. J Cereal Sci 39:99–107. doi:10.1016/S0733-5210(03)00071-7

    Article  CAS  Google Scholar 

  • Hopkins DW, Gregorich EG (2005) Decomposition of residues and loss of the δ-endotoxin from transgenic (Bt) corn (Zea mays L.) in soil. Can J Soil Sci 85:19–26

    CAS  Google Scholar 

  • Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31:132–140

    CAS  PubMed  Google Scholar 

  • James DJ, Passey AJ, Barbara DJ (1990) Agro-mediated transformation of the cultivated strawberry (F. x ananassa Duch.) using disarmed binary vectors. Plant Sci 69:79–94. doi:10.1016/0168-9452(90)90106-X

    Article  CAS  Google Scholar 

  • Kaldorf M, Fladung M, Muhs HJ, Buscot F (2002) Mycorrhizal colonization of transgenic aspen in a field trial. Planta 214:653–660. doi:10.1007/s004250100658

    Article  CAS  PubMed  Google Scholar 

  • Kaneyoshi J, Kobayashi S (1999) Characteristics of transgenic trifoliate orange (Poncirus trifoliata Raf.) possessing the rolC gene of Agrobacterium rhizogenes Ri Plasmid. J Jpn Soc Hortic Sci 68:734–738

    Article  CAS  Google Scholar 

  • Kiselev KV, Kusaykin MI, Dubrovina AS, Bezverbny DA, Zvyagintseva TN, Bulgakov VP (2006) The rolC gene induces expression of a pathogenesis-related β-1, 3-glucanase in transformed ginseng cells. Phytochemistry 67:2225–2231. doi:10.1016/j.phytochem.2006.07.019

    Article  CAS  PubMed  Google Scholar 

  • Koomen I, Grace C, Hayman DS (1987) Effectiveness of single and multiple mycorrhizal inocula on growth of clover and strawberry plants at two soil pHs. Soil Biol Biochem 19:539–544. doi:10.1016/0038-0717(87)90096-4

    Article  Google Scholar 

  • Koshita Y, Nakamura Y, Kobayashi S, Morinaga K (2002) Introduction of the rolC gene into the genome of the Japanese persimmon causes dwarfism. J Jpn Soc Hortic Sci 71:529–531

    Article  CAS  Google Scholar 

  • Maurel C, Barbier-Brygoo H, Spena A, Tempé J, Guern J (1991) Single rol genes from the Agrobacterium rhizogenes TL-DNA alter some of the cellular responses to auxin in Nicotiana tabacum. Plant Physiol 97:212–216. doi:10.1104/pp.97.1.212

    Article  CAS  PubMed  Google Scholar 

  • Mezzetti B, Costantini E, Chionchetti F, Landi L, Pandolfini T, Spena A (2004a) Genetic transformation in strawberry and raspberry for improving plant productivity and fruit quality. Euroberry Symposium Acta Hort 649:107–110

    Google Scholar 

  • Mezzetti B, Landi L, Pandolfini T, Spena A (2004b) The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. BMC Biotechnol 4:4. http://www.biomedcentral.com/1472-6750/4/4. doi:10.1186/1472-6750-4-4

  • Niemi M, Vestberg M (1992) Inoculation of commercially grown strawberry with VA mycorrhizal fungi. Plant Soil 144:133–142. doi:10.1007/BF00018854

    Article  Google Scholar 

  • Ooms G, Bains A, Burrell M, Karp A, Twell D, Wilcox E (1985) Genetic manipulation in cultivars of oilseed rape (B. napus) using Agrobacterium. Theor Appl Genet 71:325–329. doi:10.1007/BF00252075

    Google Scholar 

  • Orsomando G, Lorenzi M, Raffaelli N, Dalla Rizza M, Mezzetti B, Ruggieri S (2001) Phytotoxic protein PcF, purification, characterization, and cDNA sequencing of a novel hydroxyproline-containing factor secreted by the strawberry pathogen Phytophthora cactorum. J Biol Chem 276:21578–21584. doi:10.1074/jbc.M101377200

    Article  CAS  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:157–160

    Article  Google Scholar 

  • Pitrat M, Rissel G (1997) Ėtude de la sensibilité variétale du fraisier à Phytophthora cactorum après contaminations provoquée. Ann Amelior Plant 27:49–60

    Google Scholar 

  • Powell JR, Gulden RH, Hart MM, Campbell RG, Levy-Booth DJ, Dunfield KE, Pauls KP, Swanton CJ, Trevors JT, Klironomos JN (2007) Mycorrhizal and rhizobial colonization of genetically modified and conventional soybeans. Appl Environ Microbiol 73:4365–4367. doi:10.1128/AEM.00594-07

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Teixeira da Silva JA, Zhang L, Zhang S (2008) Transgenic strawberry: state of the art for improved traits. Biotechnol Adv 26:219–232. doi:10.1016/j.biotechadv.2007.12.004

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386

    Google Scholar 

  • Scalzo J, Battino M, Costantini E, Mezzetti B (2005) Breeding and biotechnology for improving berry nutritional quality. Biofactors 23:213–220. doi:10.1002/biof.5520230406

    Article  CAS  PubMed  Google Scholar 

  • Schmülling T, Fladung M, Großmann K, Schell J (1993) Hormonal content and sensitivity of transgenic tobacco and potato plants expressing single rol genes of A. rhizogenes T-DNA. Plant J 3:371–382

    Google Scholar 

  • Silvani VA, Fracchia S, Fernàndez L, Pérgola M, Godeas AA (2008) Simple method to obtain endophytic microorganisms from field-collected roots. Soil Biol Biochem 40:1259–1263. doi:10.1016/j.soilbio.2007.11.022

    Article  CAS  Google Scholar 

  • Slightom J, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J Biol Chem 261:108–121

    CAS  PubMed  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1990) Phosphate uptake and vesicular-arbuscular activity in mycorrhizal Allium cepa L.: effect of photon irradiance and phosphate nutrition. Aust J Plant Physiol 17:177–188

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Colonization of roots and anatomy of VA mycorrhizas. In: Smith SE, Read DJ (eds) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego, pp 46–52

    Google Scholar 

  • Taylor J, Harrier L (2001) A comparison of development and mineral nutrition of micropropagated Fragaria x ananassa cv. Elvira (strawberry) when colonised by nine species of arbuscular mycorrhizal fungi. Appl Soil Ecol 18:205–215. doi:10.1016/S0929-1393(01)00164-0

    Article  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherches et méthodes d’estimation ayant une signification fonctionnelle. Dans: Aspects physiologiques et génétiques des mycorhizes 21:7–221

    Google Scholar 

  • Vierheilig H, Alt M, Lange J, Gut-Rella M, Wiemken A, Boller T (1995) Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 61:3031–3034

    CAS  PubMed  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227. doi:10.1139/b04-082

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Winefield C, Lewis D, Arathoon S, Deroles S (1999) Alteration of Petunia plant from through the introduction of the rolC gene from Agrobacterium rhizogenes. Mol Breed 5:543–551. doi:10.1023/A:1009638401275

    Article  CAS  Google Scholar 

  • Zhang C, Hampp R, Nehls U (2006) Investigation of horizontal gene transfer in poplar/Amanita muscaria ectomycorrhizas. Environ Biosafety Res 4:235–242. doi:10.1051/ebr:2006004

    Article  CAS  Google Scholar 

  • Zuker A, Tzfira T, Scovel G, Ovadis M, Shklarman E, Itzhaki H, Vainstein A (2001) rolC-transgenic carnation with improved agronomic traits: quantitative and qualitative analyses of greenhouse-grown plants. J Am Soc Hortic Sci 126:13–18

    CAS  Google Scholar 

Download references

Financial source

The field trials were carried out following a protocol approved by CIV—National Biotechnology Commission—Italian Minister of Health. This work was supported by the FIRB project RBAUOIJTHS of the MIUR (Italian Ministry of University and Research).

Author contributions

B.M. first conceived the idea of testing the rolC gene in strawberry. L.L., F.C. and B.M designed the field experimental trial and defined the evaluation parameters. E.C. and F.C. followed the field trial and collected the field data. L.L. and E.C. performed the AMF analysis. All authors discussed the results and commented on the manuscript, which was written by B.M and L.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mezzetti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landi, L., Capocasa, F., Costantini, E. et al. ROLC strawberry plant adaptability, productivity, and tolerance to soil-borne disease and mycorrhizal interactions. Transgenic Res 18, 933–942 (2009). https://doi.org/10.1007/s11248-009-9279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-009-9279-7

Keywords

Navigation