Skip to main content

Advertisement

Log in

Ru/CeO2/MgO Catalysts for Enhanced Ammonia Synthesis Efficiency

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ammonia is used as a feedstock in the fertilizer industry and is CO2-free hydrogen (H2) and energy carrier. The Haber-Bosch process industrially used for ammonia synthesis is an energy-intensive process. Therefore, developing such efficient catalysts that can effectively synthesize ammonia at mild reaction conditions is highly required. In this study, efficient 1 wt-% Ru/CeO2/MgO catalysts were fabricated in various Ce/Mg molar ratios. At first, CeO2 was impregnated on MgO, and then these prepared CeO2/MgO were used as support to fabricate 1 wt-% Ru catalysts. Among all the Ru/CeO2/MgO catalysts, the catalysts with Ce/Mg molar ratios 0.1 and 0.3 showed the highest ammonia yields at 400 °C, which was even higher than that attained with pure CeO2 supported Ru catalyst. The measurement of activation energies and NH3, H2, and N2 reaction orders showed that the catalysts with Ce/Mg molar ratios 0.1 and 0.3 had the lowest activation energies and positive values for the H2 order. Moreover, H2-TPR analysis presented a relatively higher value for H2 consumption at lower temperatures indicating these catalysts with higher efficiency for Ru reduction than others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dimitriou P, Javaid R (2020) A review of ammonia as a compression ignition engine fuel. Int J Hydrogen Energy 45:7098–7118. https://doi.org/10.1016/j.ijhydene.2019.12.209

    Article  CAS  Google Scholar 

  2. Nanba T, Javaid R, Matsumoto H (2019) Ammonia Synthesis by using hydrogen produced from renewable energy. Catal Catal 61:66–71

    CAS  Google Scholar 

  3. Nanba T, Javaid R, Matsumoto H (2019) Ammonia synthesis catalyst for effective storage of renewable energy. Fine Chem 48:6–11

    CAS  Google Scholar 

  4. Li Z, Li M, Yang J et al (2022) Electrocatalyst design strategies for ammonia production via N2 reduction. Catal Today 388–389:12–25. https://doi.org/10.1016/j.cattod.2021.06.008

    Article  CAS  Google Scholar 

  5. Javaid R, Matsumoto H, Nanba T (2019) Influence of reaction conditions and promoting role of Ammonia Produced at higher temperature conditions in its synthesis process over Cs-Ru/MgO Catalyst. ChemistrySelect 4:2218–2224. https://doi.org/10.1002/slct.201803813

    Article  CAS  Google Scholar 

  6. Javaid R (2021) Catalytic Hydrogen Production, Storage and Application. Catalysts 11:836. https://doi.org/10.3390/catal11070836

    Article  CAS  Google Scholar 

  7. Nanba T, Nagata Y, Kobayashi K et al (2021) Explorative study of a Ru/CeO2 Catalyst for NH3 synthesis from renewable hydrogen and demonstration of NH3 synthesis under a range of reaction conditions. J Japan Pet Inst 64:1–9. https://doi.org/10.1627/JPI.64.1

    Article  CAS  Google Scholar 

  8. Javaid R, Nanba T (2021) Effect of reaction conditions and surface characteristics of Ru/CeO2 on catalytic performance for ammonia synthesis as a clean fuel. Int J Hydrog Energy 46:18107–18115. https://doi.org/10.1016/j.ijhydene.2020.07.222

    Article  CAS  Google Scholar 

  9. Javaid R, Nanba T (2022) Stability of Cs/Ru/MgO catalyst for ammonia synthesis as a hydrogen and energy carrier. Energies 15:3506

    Article  CAS  Google Scholar 

  10. Humphreys J, Lan R, Du D et al (2018) Promotion effect of proton-conducting oxide BaZr0.1Ce0.7Y0.2O3 – ∆ on the catalytic activity of Ni towards ammonia synthesis from hydrogen and nitrogen. Int J Hydrog Energy 43:17726–17736. https://doi.org/10.1016/j.ijhydene.2018.08.002

    Article  CAS  Google Scholar 

  11. Wang Q, Guo J, Chen P (2019) Recent progress towards mild-condition ammonia synthesis. J Energy Chem 36:25–36. https://doi.org/10.1016/j.jechem.2019.01.027

    Article  Google Scholar 

  12. Bielawa H, Hinrichsen O, Birkner A, Muhler M (2001) The Ammonia-Synthesis Catalyst of the Next Generation: Barium-Promoted. Angew Chem Int Ed Engl 40:1061–1063

    Article  CAS  PubMed  Google Scholar 

  13. Schlögl R (2003) Catalytic synthesis of ammonia - A “never-ending story”? Angew Chemie - Int Ed 42:2004–2008. https://doi.org/10.1002/anie.200301553

    Article  CAS  Google Scholar 

  14. Javaid R, Nanba T, Matsumoto H (2023) Kinetic analysis of Ammonia Production on Ru Catalyst under high pressure conditions. In: Aika K, Kobayashi H (eds) CO2 free ammonia as an energy carrier. Springer, Cham, pp 279–286

    Chapter  Google Scholar 

  15. Ogura Y, Sato K, Miyahara SI et al (2018) Efficient ammonia synthesis over a Ru/La0.5Ce0.5O1.75 catalyst pre-reduced at high temperature. Chem Sci 9:2230–2237. https://doi.org/10.1039/c7sc05343f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. You Z, Inazu K, Aika K, ichi, Baba T (2007) Electronic and structural promotion of barium hexaaluminate as a ruthenium catalyst support for ammonia synthesis. J Catal 251:321–331. https://doi.org/10.1016/j.jcat.2007.08.006

    Article  CAS  Google Scholar 

  17. Yang J, Wang S, Li Y et al (2019) Novel design concept for a commercial-scale plant for supercritical water oxidation of industrial and sewage sludge. J Environ Manage 233:131–140. https://doi.org/10.1016/j.jenvman.2018.11.142

    Article  CAS  PubMed  Google Scholar 

  18. Javaid R, Nanba T (2021) Effect of preparation method and reaction parameters on catalytic activity for ammonia synthesis. Int J Hydrogen Energy 46:35209–35218. https://doi.org/10.1016/j.ijhydene.2021.08.082

    Article  CAS  Google Scholar 

  19. Kobayashi K, Javaid R, Manaka Y et al (2023) Comparison of several Ammonia catalysts worked under Industrial Conditions. In: Aika K, Kobayashi H (eds) CO2 free ammonia as an energy carrier. Springer, Cham, pp 263–278

    Chapter  Google Scholar 

  20. Moggi P, Predieri G, Maione A (2002) Ru/MgO sol-gel prepared catalysts for ammonia synthesis. Catal Lett 79:7–15. https://doi.org/10.1023/A:1015340200507

    Article  CAS  Google Scholar 

  21. Xu QC, Lin JD, Li J et al (2007) Microwave-assisted synthesis of MgO-CNTs supported ruthenium catalysts for ammonia synthesis. Catal Commun 8:1881–1885. https://doi.org/10.1016/j.catcom.2007.03.002

    Article  CAS  Google Scholar 

  22. Luo X, Wang R, Ni J et al (2009) Effect of La2O3 on Ru/CeO2-La 2O3 catalyst for ammonia synthesis. Catal Lett 133:382–387. https://doi.org/10.1007/s10562-009-0177-7

    Article  CAS  Google Scholar 

  23. Yang XL, Zhang WQ, Xia CG et al (2010) Low temperature ruthenium catalyst for ammonia synthesis supported on BaCeO 3 nanocrystals. Catal Commun 11:867–870. https://doi.org/10.1016/j.catcom.2010.03.008

    Article  CAS  Google Scholar 

  24. Rosowski F, Hornung A, Hinrichsen O et al (1997) Ruthenium catalysts for ammonia synthesis at high pressures. Preparation, characterization, and power-law kinetics. Appl Catal 151(2):443–460

    Article  CAS  Google Scholar 

  25. Aika K, Kumasaka M, Oma T et al (1986) Support and promoter effect of ruthenium catalyst. III. Kinetics of ammonia synthesis over various Ru catalysts. Appl Catal 28:57–68. https://doi.org/10.1016/S0166-9834(00)82492-6

    Article  CAS  Google Scholar 

  26. Niwa Y, Aika K (1996) Ruthenium Catalyst supported on CeO2 for Ammonia Synthesis. Chem Lett 25:3–4

    Article  Google Scholar 

  27. Jacobsen CJH, Dahl S, Hansen PL et al (2000) Structure sensitivity of supported ruthenium catalysts for ammonia synthesis. J Mol Catal A Chem 163:19–26. https://doi.org/10.1016/S1381-1169(00)00396-4

    Article  CAS  Google Scholar 

  28. Zhang L, Lin J, Ni J et al (2011) Highly efficient Ru/Sm2O3-CeO2 catalyst for ammonia synthesis. Catal Commun 15:23–26. https://doi.org/10.1016/j.catcom.2011.08.003

    Article  CAS  Google Scholar 

  29. Ma Z, Xiong X, Song C et al (2016) Electronic metal-support interactions enhance the ammonia synthesis activity over ruthenium supported on Zr-modified CeO2 catalysts. RSC Adv 6:51106–51110. https://doi.org/10.1039/c6ra10540h

    Article  CAS  Google Scholar 

  30. Saito M, Itoh M, Iwamoto J et al (2006) Synergistic effect of MgO and CeO2 as a support for ruthenium catalysts in ammonia synthesis. Catal Lett 106:107–110. https://doi.org/10.1007/s10562-005-9615-3

    Article  CAS  Google Scholar 

  31. Wang X, Ni J, Lin B et al (2010) Highly efficient Ru/MgO–CeO2 catalyst for ammonia synthesis. Catal Commun 12:251–254

    Article  CAS  Google Scholar 

  32. Javaid R, Nanba T (2021) Effect of texture and physical properties of catalysts on ammonia synthesis. Catal Today. https://doi.org/10.1016/j.cattod.2021.06.007

    Article  Google Scholar 

  33. Javaid R, Nanba T (2016) Optimization of reaction conditions for ammonia synthesis using Ru/Cs/MgO catalyst. In: WHEC 2016–21st World Hydrogen Energy Conference 2016, Proceedings

  34. Javaid R, Nanba T (2020) MgFe2O4-Supported Ru Catalyst for Ammonia Synthesis: Promotive Effect of Chlorine. ChemistrySelect 5:4312–4315. https://doi.org/10.1002/slct.202000883

    Article  CAS  Google Scholar 

  35. Javaid R, Aoki Y, Nanba T (2020) Highly efficient Ru/MgO–Er2O3 catalysts for ammonia synthesis. J Phys Chem Solids 146:109570. https://doi.org/10.1016/j.jpcs.2020.109570

    Article  CAS  Google Scholar 

  36. Javaid R, Nanba T (2022) Efficient Ru/MgO–CeO2 catalyst for ammonia synthesis as a hydrogen and energy carrier. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.05.280

    Article  Google Scholar 

  37. Zhou Q, Fu X, Hui Lim K et al (2022) Complete confinement of Ce/Ni within SiO2 nanotube with high oxygen vacancy concentration for CO2 methane reforming. Fuel 325:124819. https://doi.org/10.1016/j.fuel.2022.124819

    Article  CAS  Google Scholar 

  38. Li Z, Kathiraser Y, Kawi S (2015) Facile synthesis of high surface area yolk-shell Ni@Ni embedded SiO2 via Ni phyllosilicate with enhanced performance for CO2 reforming of CH4. ChemCatChem 7:160–168. https://doi.org/10.1002/cctc.201402673

    Article  CAS  Google Scholar 

  39. Li Z, Mo L, Kathiraser Y, Kawi S (2014) Yolk-satellite-shell structured Ni-Yolk@Ni@SiO2 nanocomposite: superb catalyst toward methane CO2 reforming reaction. ACS Catal 4:1526–1536. https://doi.org/10.1021/cs401027p

    Article  CAS  Google Scholar 

  40. Ravi M, Makepeace JW (2021) Facilitating green ammonia manufacture under milder conditions: what do heterogeneous catalyst formulations have to offer? Chem Sci. https://doi.org/10.1039/d1sc04734e

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ye TN, Park SW, Lu Y et al (2020) Contribution of Nitrogen Vacancies to Ammonia Synthesis over Metal Nitride catalysts. J Am Chem Soc 142:14374–14383. https://doi.org/10.1021/jacs.0c06624

    Article  CAS  PubMed  Google Scholar 

  42. Bourja L, Bakiz B, Benlhachemi A et al (2010) Synthesis and characterization of nanosized ce 1-x bi x o 2-δ solid solutions for catalytic applications. J Taibah Univ Sci 4:1–8. https://doi.org/10.1016/s1658-3655(12)60021-1

    Article  Google Scholar 

  43. Yang X, Liu Y, Li J, Zhang Y (2019) Effects of calcination temperature on morphology and structure of CeO 2 nanofibers and their photocatalytic activity. Mater Lett 241:76–79. https://doi.org/10.1016/j.matlet.2019.01.006

    Article  CAS  Google Scholar 

  44. Li Z, Kawi S (2018) Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4: influence of ni precursors on structure, sintering, and carbon resistance. Catal Sci Technol 8:1915–1922. https://doi.org/10.1039/c8cy00024g

    Article  CAS  Google Scholar 

  45. Li Z, Wang Z, Jiang B, Kawi S (2018) Sintering resistant ni nanoparticles exclusively confined within SiO2 nanotubes for CH4 dry reforming. Catal Sci Technol 8:3363–3371. https://doi.org/10.1039/c8cy00767e

    Article  CAS  Google Scholar 

  46. Manaka Y, Nagata Y, Kobayashi K et al (2020) The effect of a ruthenium precursor on the low-temperature ammonia synthesis activity over Ru/CeO2. Dalt Trans 49:17143–17146. https://doi.org/10.1039/d0dt01974g

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahat Javaid.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 454.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javaid, R., Nanba, T. Ru/CeO2/MgO Catalysts for Enhanced Ammonia Synthesis Efficiency. Top Catal 66, 452–460 (2023). https://doi.org/10.1007/s11244-023-01789-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01789-5

Keywords

Navigation