Skip to main content
Log in

Effect of Bismuth Dopant on the Photocatalytic Properties of SrTiO3 Under Solar Irradiation

  • OriginalPaper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This work presents the structural, morphological and photocatalytic properties of pure SrTiO3 (STO) and Bismuth doped STO. Several Bi doped samples were synthesized using Bi concentrations from 0.5 to 5 mol% and the sol-gel method. According to the X-ray diffraction analysis, all the samples presented cubic phase. The Scanning electron microscopy (SEM) showed that the samples without dopant or with low Bi concentration (0 and 0.5 mol%) presented a quasi-spherical morphology. The sample doped with 1 mol% of Bi presented mainly a rod-like morphology, while the samples doped with 2 and 5 mol% showed a mixture of quasi-cubic particles and rod-like particles. The absorbance experiments demonstrated that the introduction of Bi in the STO host extended the light absorption in the visible region and decreased the band gap of STO. Both effects benefited the photocatalytic properties of STO:Bi powders. In fact, the photocatalytic evaluation of the STO and STO:Bi powders under natural solar light revealed that total degradation of methylene blue (MB) can be produced only by the sample doped with 1 mol%. Scavenger experiments were also carried out using teraphtalic acid and benzoquinone in order to figure out which oxidizing agent (OH· radicals or O2) is producing the degradation of MB dye and found that the OH· radicals are the dominant agent. Since the STO:Bi powders can be activated by solar light for the photocatalytic degradation of MB, these powders could be a low cost option for the degradation of dyes in water treatment plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dn S, Rajan M (2014) Impact of dyeing industry effluent on groundwater quality by water quality index and correlation analysis. J Pollut Eff Control 02:2–5. https://doi.org/10.4172/2375-4397.1000126

    Article  Google Scholar 

  2. Augugliaro V, Palmisano G, Palmisano L, Soria J (2019) Heterogeneous photocatalysis and catalysis. In: Heterogeneous photocatalysis. Elsevier, pp. 1–24

  3. Salgado BCB, Cardeal RA, Valentini A (2019) Photocatalysis and photodegradation of pollutants. In: Nanomaterials applications for environmental matrices. Elsevier, pp 449–488

  4. Rueda-Marquez JJ, Levchuk I, Fernández Ibañez P, Sillanpää M (2020) A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.120694

    Article  Google Scholar 

  5. Hachem C, Bocquillon F, Zahraa O, Bouchy M (2001) Decolourization of textile industry wastewater by the photocatalytic degradation process. Dye Pigment 49:117–125. https://doi.org/10.1016/S0143-7208(01)00014-6

    Article  CAS  Google Scholar 

  6. Ehrampoush MH, Moussavi GHR, Ghaneian MT, Rahmi S, Ahmadian M (2010) Removal of methylene blue (MB) dye from textile synthetic wastewater using TiO2/UV-C photocatalytic process. Aust J Basic Appl Sci 4:4279–4285

    CAS  Google Scholar 

  7. Qazi IR, Lee WJ, Lee HC, Hassan MS, Yang O-B (2010a) Photocatalytic degradation of methylene blue dye under visible light over Cr doped strontium titanate (SrTiO3) nanoparticles. J Nanosci Nanotechnol 10:3430–3434. https://doi.org/10.1166/jnn.2010.2326

    Article  CAS  PubMed  Google Scholar 

  8. Rahman QI, Ahmad M, Misra SK, Lohani M (2012) Efficient degradation of methylene blue dye over highly reactive Cu doped strontium titanate (SrTiO3) nanoparticles photocatalyst under visible light. J Nanosci Nanotechnol 12:7181–7186. https://doi.org/10.1166/jnn.2012.6494

    Article  CAS  PubMed  Google Scholar 

  9. Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Hermann JM (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B Environ 39:75–90. https://doi.org/10.1016/S0926-3373(02)00078-4

    Article  CAS  Google Scholar 

  10. Bajorowicz B, Kobylański MP, Malankowska A, Pawel M, Nadolna J, Pieczyńska A, Zaleska-Medvnska A (2018) Application of metal oxide-based photocatalysis. In: Korotcenkov G (ed) Metal Oxide-Based Photocatalysis, First. Elsevier, Gdansk, pp 211–340

    Google Scholar 

  11. Omri A, Hamza W, Benzina M (2020) Photo-Fenton oxidation and mineralization of methyl orange using Fe-sand as effective heterogeneous catalyst. J Photochem Photobiol A Chem 393:112444. https://doi.org/10.1016/j.jphotochem.2020.112444

    Article  CAS  Google Scholar 

  12. Omri A, Benzina M (2019) Influence of the origin of carbon support on the structure and properties of TiO2 nanoparticles prepared by dip coating method. Arab J Chem 12:2926–2936. https://doi.org/10.1016/j.arabjc.2015.06.027

    Article  CAS  Google Scholar 

  13. Omri A, Benzina M, Bennour F (2015) Industrial application of photocatalysts prepared by hydrothermal and sol–gel methods. J Ind Eng Chem 21:356–362. https://doi.org/10.1016/j.jiec.2014.02.045

    Article  CAS  Google Scholar 

  14. Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L, Xu Yang X, Zeng FD (2009) Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett 191:1–8. https://doi.org/10.1016/j.toxlet.2009.05.020

    Article  CAS  PubMed  Google Scholar 

  15. Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84:415–430. https://doi.org/10.1016/j.aquatox.2007.07.009

    Article  CAS  PubMed  Google Scholar 

  16. Fan WH, Cui MM, Shi ZW, Tan C, Yang XP (2012) enhanced oxidative stress and physiological damage in daphnia magna by copper in the presence of nano-TiO2. J Nanomater 2012:1–7. https://doi.org/10.1155/2012/398720

    Article  CAS  Google Scholar 

  17. García CR, Oliva J, Arroyo A et al (2018) Photocatalytic activity of bismuth doped SrAl2O4 ceramic powders. J Photochem Photobiol A Chem 351:245–252. https://doi.org/10.1016/j.jphotochem.2017.10.039

    Article  CAS  Google Scholar 

  18. Qi Y, Chen S, Zhang J (2019) Fluorine modification on titanium dioxide particles: improving the anti-icing performance through a very hydrophobic surface. Appl Surf Sci 476:161–173. https://doi.org/10.1016/j.apsusc.2019.01.073

    Article  CAS  Google Scholar 

  19. Murcia-López S, Hidalgo MC, Navío JA (2011) Synthesis, characterization and photocatalytic activity of Bi-doped TiO2 photocatalysts under simulated solar irradiation. Appl Catal A Gen 404:59–67. https://doi.org/10.1016/j.apcata.2011.07.008

    Article  CAS  Google Scholar 

  20. Kanhere P, Chen Z (2014) A review on visible light active perovskite-based photocatalysts. Molecules 19:19995–20022. https://doi.org/10.3390/molecules191219995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hashimoto K, Irie H, Fujishima A (2006) Invited review paper TiO2 photocatalysis: a historical overview and future prospects. 44:8269–8285

  22. Chen C, Bousnina M, Giovannelli F, Delorme F (2019) Influence of Bi on the thermoelectric properties of SrTiO3-δ. J Mater 5:88–93. https://doi.org/10.1016/j.jmat.2018.12.004

    Article  Google Scholar 

  23. Modak B, Ghosh SK (2018) Insight into the enhanced photocatalytic activity of SrTiO3 in the presence of a (Ni, V/Nb/Ta/Sb) pair. Phys Chem Chem Phys 20:20078–20087. https://doi.org/10.1039/c8cp00844b

    Article  CAS  PubMed  Google Scholar 

  24. Zhou M, Chen J, Zhang Y et al (2020) Shape-controlled synthesis of golf-like, star-like, urchin-like and flower-like SrTiO3 for highly efficient photocatalytic degradation and H2 production. J Alloys Compd 817:152796. https://doi.org/10.1016/j.jallcom.2019.152796

    Article  CAS  Google Scholar 

  25. Jiang J, Jia Y, Wang Y et al (2019) Insight into efficient photocatalytic elimination of tetracycline over SrTiO3(La, Cr)under visible-light irradiation: The relationship of doping and performance. Appl Surf Sci 486:93–101. https://doi.org/10.1016/j.apsusc.2019.04.261

    Article  CAS  Google Scholar 

  26. Xian T, Di L, Sun X, Ma J, Zhou Y, Wei X (2018) Photocatalytic degradation of dyes over Au decorated SrTiO3 nanoparticles under simulated sunlight and visible light irradiation. J Ceram Soc Japan 126:354–359. https://doi.org/10.2109/jcersj2.17244

    Article  CAS  Google Scholar 

  27. Xie T-H, Sun X, Lin J (2008) Enhanced photocatalytic degradation of RhB Driven by visible light-induced MMCT of Ti(IV)−O−Fe(II) formed in Fe-doped SrTiO3. J Phys Chem C 112:9753–9759. https://doi.org/10.1021/jp711797a

    Article  CAS  Google Scholar 

  28. Bantawal H, Shenoy US, Bhat DK (2020) Vanadium-doped SrTiO3 nanocubes: insight into role of vanadium in improving the photocatalytic activity. Appl Surf Sci 513:145858. https://doi.org/10.1016/j.apsusc.2020.145858

    Article  CAS  Google Scholar 

  29. Shahabuddin S, Muhamad Sarih N, Mohamad S, Joon Ching J (2016) SrTiO3 nanocube-doped polyaniline nanocomposites with enhanced photocatalytic degradation of methylene blue under visible light. Polymers (Basel) 8:27. https://doi.org/10.3390/polym8020027

    Article  CAS  Google Scholar 

  30. Nunes MJ, Lopes A, Pacheco MJ, Ciríaco L (2017) Preparation, characterization and environmental applications of Sr1− x(La, Bi)xTiO3 perovskites immobilized on Ni-foam: photodegradation of the Acid Orange 7. Environ Sci Pollut Res 24:11102–11110. https://doi.org/10.1007/s11356-016-7417-3

    Article  CAS  Google Scholar 

  31. Hu C, Huang H-X, Lin Y-F, Yoshida M, Chen TH (2019) Decoration of SrTiO3 nanofibers by BiOI for photocatalytic methyl orange degradation under visible light irradiation. J Taiwan Inst Chem Eng 96:264–272. https://doi.org/10.1016/j.jtice.2018.11.020

    Article  CAS  Google Scholar 

  32. Xia Y, He Z, Lu Y, Tang B (2018) Fabrication and photocatalytic property of magnetic SrTiO3/NiFe2O4 heterojunction nanocomposites. RSC Adv 8:5441–5450. https://doi.org/10.1039/C7RA12393K

    Article  CAS  Google Scholar 

  33. Che H, Chen J, Huang K et al (2016) Construction of SrTiO3/Bi2O3heterojunction towards to improved separation efficiency of charge carriers and photocatalytic activity under visible light. J Alloys Compd 688:882–890. https://doi.org/10.1016/j.jallcom.2016.07.311

    Article  CAS  Google Scholar 

  34. Marchelek M, Grabowska E, Klimczuk T et al (2018) Visible light photocatalysis employing TiO2/SrTiO3-BiOI composites: Surface properties and photoexcitation mechanism. Mol Catal 452:154–166. https://doi.org/10.1016/j.mcat.2018.04.006

    Article  CAS  Google Scholar 

  35. Lv M, Xie Y, Wang Y et al (2015) Bismuth and chromium co-doped strontium titanates and their photocatalytic properties under visible light irradiation. Phys Chem Chem Phys 17:26320–26329. https://doi.org/10.1039/c5cp03889h

    Article  CAS  PubMed  Google Scholar 

  36. Parashar M, Shukla VK, Singh R (2020) Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. J Mater Sci Mater Electron 31:3729–3749. https://doi.org/10.1007/s10854-020-02994-8

    Article  CAS  Google Scholar 

  37. Olav T, Sunde L, Grande T, Einarsrud M (2017) Handbook of Sol-Gel Science and Technology. Springer International Publishing, Cham

    Google Scholar 

  38. Gan YX, Jayatissa AH, Yu Z et al (2020) Hydrothermal synthesis of nanomaterials. J Nanomater. https://doi.org/10.1155/2020/8917013

    Article  Google Scholar 

  39. LaGrow AP, Besenhard MO, Hodzic A et al (2019) Unravelling the growth mechanism of the co-precipitation of iron oxide nanoparticles with the aid of synchrotron X-Ray diffraction in solution. Nanoscale 11:6620–6628. https://doi.org/10.1039/C9NR00531E

    Article  CAS  PubMed  Google Scholar 

  40. Visuttipitukul P, Sooksaen P, Yongvanich N (2013) Sol-gel synthesis of SrTiO3 nanoparticles using acetic acid as a chelating agent. Ferroelectrics 457:82–88. https://doi.org/10.1080/00150193.2013.848755

    Article  CAS  Google Scholar 

  41. Klaytae T, Panthong P, Thountom S (2013) Preparation of nanocrystalline SrTiO3 powder by sol-gel combustion method. Ceram Int 39:1–4. https://doi.org/10.1016/j.ceramint.2012.10.103

    Article  CAS  Google Scholar 

  42. Golam M, Mumin MA, Charpentier PA (2014) Enhancement of photocurrent in dye-sensitized solar cells using bismuth doped TiO2- graphene as a hot carrier transport. J Nanomater Mol Nanotechnol 1:1–6. https://doi.org/10.4172/2324-8777.S1-002

    Article  Google Scholar 

  43. Wu M-C, Chih J-S, Huang W-K (2014) Bismuth doping effect on TiO2 nanofibres for morphological change and photocatalytic performance. CrystEngComm 16:10692–10699. https://doi.org/10.1039/C4CE01348D

    Article  CAS  Google Scholar 

  44. Nazir S, Mahmood I, Noor NA, Laref A, Sajjad M (2019) Ab-initio simulations of MgTiO3 oxide at different pressure. High Energy Density Phys 33:100715. https://doi.org/10.1016/j.hedp.2019.100715

    Article  Google Scholar 

  45. Rahaman MN (1993) Hydrothermal synthesis and sintering of ultrafine CeO2 powders. J Mater Res 8:1680–1686. https://doi.org/10.1557/JMR.1993.1680

    Article  Google Scholar 

  46. Xing G, Zhao L, Sun T, Wang X (2016) Hydrothermal derived nitrogen doped SrTiO3 for efficient visible light driven photocatalytic reduction of chromium (VI). Springerplus 5:1132. https://doi.org/10.1186/s40064-016-2804-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu B, Zhou S, Tan D et al (2013) Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germanate glasses. J Appl Phys 113:083503. https://doi.org/10.1063/1.4791698

    Article  CAS  Google Scholar 

  48. Pandey J, Sethi A, Uma S, Nagarajan R (2018) Catalytic Application of Oxygen Vacancies Induced by Bi 3+ Incorporation in ThO2 Samples Obtained by Solution Combustion Synthesis. ACS Omega 3:7171–7181. https://doi.org/10.1021/acsomega.8b00528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lim J, Lim H, Lee YS (2019) Ambient dependence of visible emissions in SrTiO3. 19:1177–1181. https://doi.org/https://doi.org/10.1016/j.cap.2019.07.016

  50. Lim J, Lee YS, Bu SD (2018) Surface-direction dependence of the oxygen vacancy formation in SrTiO3 single crystals. Ceram Int 44:S93–S95. https://doi.org/10.1016/j.ceramint.2018.08.232

    Article  CAS  Google Scholar 

  51. Da Silva LF, Lopes OF, de Mendonça VR, Carvalho KT, Longo E, Ribeiro C, Matelaro VR (2016) An understanding of the photocatalytic properties and pollutant degradation mechanism of SrTiO3 nanoparticles. Photochem Photobiol 92:371–378. https://doi.org/10.1111/php.12586

    Article  CAS  PubMed  Google Scholar 

  52. Ansari SA, Cho MH (2016) Highly visible light responsive, narrow band gap TiO2 nanoparticles modified by elemental red phosphorus for photocatalysis and photoelectrochemical applications. Sci Rep 6:25405. https://doi.org/10.1038/srep25405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xia Y, He Z, Lu Y, Tang B, Sun S, Su J, Lia X (2018) Fabrication and photocatalytic property of magnetic SrTiO3/NiFe2O4 heterojunction nanocomposites. RSC Adv 8:5441–5450. https://doi.org/10.1039/C7RA12393K

    Article  CAS  Google Scholar 

  54. Gómez-Solís C, Oliva J, Diaz-Torres LA, Bernal-Alvarado J, Reyes-Zamudio V, Abidov A, Torres-Martínez LM (2019) Efficient photocatalytic activity of MSnO3 (M: Ca, Ba, Sr) stannates for photoreduction of 4-nitrophenol and hydrogen production under UV light irradiation. J Photochem Photobiol A Chem 371:365–373. https://doi.org/10.1016/j.jphotochem.2018.11.039

    Article  CAS  Google Scholar 

  55. Jinfeng Z, Tao Z (2013) Preparation and characterization of highly efficient and stable visible-light-responsive photocatalyst AgBr/Ag3PO4. J Nanomater 2013:1–11. https://doi.org/10.1155/2013/565074

    Article  CAS  Google Scholar 

  56. Xian T, Yang H, Di L et al (2014) Photocatalytic reduction synthesis of SrTiO3-graphene nanocomposites and their enhanced photocatalytic activity. Nanoscale Res Lett 9:1–9. https://doi.org/10.1186/1556-276X-9-327

    Article  CAS  Google Scholar 

  57. Sulaeman U, Yin S (2010) Sato T (2010) Solvothermal synthesis and photocatalytic properties of nitrogen-doped SrTiO3 nanoparticles. J Nanomater 2010:629727. https://doi.org/10.1155/2010/629727

    Article  CAS  Google Scholar 

  58. Pradhan AC, Paul A, Rao FR (2017) Sol-gel-cum-hydrothermal synthesis of mesoporous Co-Fe@Al2O3−MCM-41 for methylene blue remediation. J. of Chem. Sci 129:381–395

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D. Chavez thanks to CONACYT-Mexico for the Doctorate scholarship 693166. J. Oliva acknowledges the support through the CATEDRAS-CONACYT program. C.R. García acknowledges the support from Coordinación Unidad Saltillo and DGEPI from Autonomous University of Coahuila.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos Rodriguez Garcia or Jorge Oliva.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, C.R., Oliva, J., Chávez, D. et al. Effect of Bismuth Dopant on the Photocatalytic Properties of SrTiO3 Under Solar Irradiation. Top Catal 64, 155–166 (2021). https://doi.org/10.1007/s11244-020-01391-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01391-z

Keywords

Navigation