Skip to main content
Log in

Control of the NO–NH3 SCR Behavior of Cu-ZSM-5 by Variation of the Electronic State of Copper

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The effect of NH4OH/Cu2+ in a copper-acetate solution on the properties of ion-exchanged Cu-ZSM-5 catalysts in the selective catalytic reduction of NO by NH3 (NO–NH3 SCR) has been studied. The temperature programmed desorption of ammonia (NH3-TPR) on Cu-ZSM-5 and the ammonia adsorption–desorption dynamics at 75–300 °C were studied to identify and quantify the nature of acid sites and ammonia desorption heat of Cu-ZSM-5. The Cu-ZSM-5 catalysts containing Cu-structures with extra-lattice oxygen were active in the low-temperature SCR, whereas those with isolated Cu2+ ions were active in the high-temperature SCR. It was shown that Cu-structures with extra-lattice oxygen were generated during the ion exchange of H-ZSM-5 with a water-ammonia solution of copper-acetate where the NH4OH/Cu2+ ratio was in the range of 6–15. Isolated Cu2+ ions were produced in the ion-exchange mode with the ammonia-free solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li J, Chang H, Ma L, Hao J, Yang RT (2011) Catal Today 175:147–156

    Article  CAS  Google Scholar 

  2. Komatsu T, Nunokawa M, Moon S, Takahara T, Namba S, Yashima T (1994) J Catal 148:427–437

    Article  CAS  Google Scholar 

  3. Sullivan JA, Cunningham J, Morris MA, Keneavey K (1995) Appl Catal B 7:137–151

    Article  CAS  Google Scholar 

  4. Salker AV, Weisweiler W (2000) Appl Catal A 203:221–229

    Article  CAS  Google Scholar 

  5. Choi EY, Nam IS, Kim YG (1996) J Catal 161:597–604

    Article  CAS  Google Scholar 

  6. Ramachandran B, Herman RG, Choi S, Stenger HG, Lyman CE, Sale JW (2000) Catal Today 55:281–290

    Article  CAS  Google Scholar 

  7. Baik JH, Yim SD, Nam IS, Mok YS, Lee JH, Cho BK, Oh SH (2004) Top Catal 30–31:37–42

    Article  Google Scholar 

  8. Rahkamaa-Tolonen K, Maunula T, Lomma M, Huuhtanen M, Keiski RL (2005) Catal Today 100:217–222

    Article  CAS  Google Scholar 

  9. Sjovall H, Olsson L, Fridell E, Blint RJ (2006) Appl Catal B 64:180–188

    Article  CAS  Google Scholar 

  10. Park J-H, Parka HJ, Baik JH, Nam I-S, Shin C-H, Lee J-H, Cho BK, Oh SH (2006) J Catal 240:47–57

    Article  CAS  Google Scholar 

  11. Sultana A, Nanba T, Haneda M, Sasaki M, Hamada H (2010) Appl Catal B Environ 101:61–67

    Article  CAS  Google Scholar 

  12. Wilken N, Wijayanti K, Kamasamudram K, Currier NW, Vedaiyan R, Yezerets A, Olsson L (2012) Appl Catal B 111–112:58–66

    Google Scholar 

  13. Kwak JH, Tonkyn RG, Kim DH, Szanyi J, Peden CHF (2010) J Catal 275:187–190

    Article  CAS  Google Scholar 

  14. Fickel DW, D’Addio E, Lauterbach JA, Lobo RF (2011) Appl Catal B 102:441–448

    Article  CAS  Google Scholar 

  15. Deka U, Juhin A, Eilertsen EA, Emerich H, Green MA, Korhonen ST, Weckhuysen BM, Beale AM (2012) J Phys Chem C 116:4809–4818

    Article  CAS  Google Scholar 

  16. Wang L, Li W, Qi GS, Weng D (2012) J Catal 289:21–29

    Article  CAS  Google Scholar 

  17. Wang J, Yu T, Wang XQ, Qi GS, Xue JJ, Shen MQ, Li W (2012) Appl Catal B 127:137–147

    Article  CAS  Google Scholar 

  18. Metkar PS, Harold MP, Balakotaiah V (2013) Chem Eng Sci 87:51–66

    Article  CAS  Google Scholar 

  19. Goltl F, Bulo RE, Hafner J, Sautet P (2013) J Phys Chem Lett 2244–2249

  20. Bates SA, Verma AA, Paolucci C, Parekh AA, Anggara T, Yezerets A, Schneider WF, Miller JT, Delgass WN, Ribeiro FH (2014) J Catal 312:87–97

    Article  CAS  Google Scholar 

  21. Joshi SY, Kumar A, Luo J, Kamasamudram K, Yezerets A (2015) Appl Catal B 165:27–35

    Article  CAS  Google Scholar 

  22. Wang D, Jangjou Y, Liu Y, Sharma MK, Luo J, Li J, Kamasamudram K, Epling WS (2015) Appl Catal B 165:438–445

    Article  CAS  Google Scholar 

  23. Gao F, Walter ED, Kollar M, Wang Y, Szanyi J, Peden CHF (2014) J Catal 319:1–14

    Article  CAS  Google Scholar 

  24. Kieger S, Delahay G, Coq B, Neveu B (1999) J Catal 183:267–280

    Article  CAS  Google Scholar 

  25. Sultana A, Sasaki M, Suzuki K, Hamada H (2013) Catal Commun 41:21–25

    Article  CAS  Google Scholar 

  26. Yashnik SA, Ismagilov ZR, Anufrienko VF (2005) Catal Today 110:310–322

    Article  CAS  Google Scholar 

  27. Yashnik SA, Salnikov AV, Vasenin NT, Anufrienko VF, Ismagilov ZR (2012) Catal Today 197:214–227

    Article  CAS  Google Scholar 

  28. Yashnik SA, Ismagilov ZR (2015) Appl Catal B 170–171:241–254

    Article  CAS  Google Scholar 

  29. Yashnik SA, Ismagilov ZR (2016) Kin Catal 57:776–796

    Article  CAS  Google Scholar 

  30. Cvetanovic RJ, Amenomiya Y (1972) Catal Rev 6:21–48

    Article  CAS  Google Scholar 

  31. Baes CF Jr, Mesmer RE (1976) The Hydrolysis of cations. Wiley, New York, 267–274

    Google Scholar 

  32. Zhang T, Shi J, Liu J, Wang D, Zhao Z, Cheng K, Li (2016) Appl Surf Sci 375:186–195

    Article  CAS  Google Scholar 

  33. Katada N, Igi H, Kim J, Niwa M (1997) J Phys Chem B 110:5969–5977

    Article  Google Scholar 

  34. Martins GVA, Berlier G, Bisio C, Coluccia S, Pastore HO, Marchese L (2008) J Phys Chem C 112:7193–7200

    Article  CAS  Google Scholar 

  35. Huang Y, Vansant EF (1973) J Phys Chem 77:663–667

    Article  CAS  Google Scholar 

  36. Vansant EF, Lunsford JH (1972) J Phys Chem 76:2860–2865

    Article  CAS  Google Scholar 

  37. Luo J, Gao F, Kamasamudram K, Currier N, Peden CHF, Yezerets A (2017) J Catal 348:291–299

    Article  CAS  Google Scholar 

  38. Colombo M, Nova I, Tronconi E (2010) Catal Today 151:223–230

    Article  CAS  Google Scholar 

  39. Ruggeri MP, Nova I, Tronconi E, Collier JE, York APE (2016) Top Catal 59:875–881

    Article  CAS  Google Scholar 

  40. Lever ABP (1984) Inorganic Electron Spectroscopy. 2, Elsevier, Amsterdam

    Google Scholar 

  41. Tikhomirova NN, Zamaraev KI, Berdnikov VM (1963) J Struct Chem (Engl Transl) 4:407–411

    Article  Google Scholar 

  42. Bendrich M, Scheuer A, Hayes RE, Votsmeier M (2018) Appl Catal B 222:76–87

    Article  CAS  Google Scholar 

  43. Zhu H, Kwak JH, Peden CHF, Szanyi J (2013) Catal Today 205:16–23

    Article  CAS  Google Scholar 

  44. Koebel M, Elsener M (1998) Chem Eng Sci 53:657–669

    Article  CAS  Google Scholar 

  45. Bates SA, Delgass WN, Ribeiro FH, Miller JT, Gouder R (2014) J Catal 312:26–36

    Article  CAS  Google Scholar 

  46. Pereda-Ayo B, De La Torre U, Illan-Gomez MJ, Bueno-Lopez A, Gonzalez-Velasco JR (2014) Appl Catal B 147:420–428

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was conducted within the framework of the budget project (АААА-А17-117041710086-6) of Boreskov Institute of Catalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Yashnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yashnik, S.A., Ismagilov, Z.R. Control of the NO–NH3 SCR Behavior of Cu-ZSM-5 by Variation of the Electronic State of Copper. Top Catal 62, 179–191 (2019). https://doi.org/10.1007/s11244-018-1101-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1101-4

Keywords

Navigation